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EXECUTIVE SUMMARY

Narrow-sense heritabilities, genetic correlations between traits, and predicted
genetic gains for pretreatment yield, pretreated holocellulose, enzymatic hydrolysis
yield, and recalcitrance factor were predicted for 284 progeny trees, 30 woods-

run (unimproved) trees, 28 crosses (between 6 and 12 progeny per cross) and 46
parents. Heritabilities ranged from 0.18 to 0.77, very comparable to many publica-
tions for other wood properties (jet-fuel related heritabilities have not be reported
before). While specific gravity was favorably correlated with recalcitrance factor,
the genetic correlation was not high enough to be a very reliable predictor (indirect
selection trait). One of the forward selections had a 40.6% predicted gain in holo-
cellulose yield and 34.7% predicted gain in recalcitrance factor. If instead we were
to select existing seed producing parents, one parent had a 27.0% predicted gain in
holocellulose yield and 21.5% predicted gain in recalcitrance factor.

The contract for building the array (50K SNPs) using the Affymetrix platform, and
for genotyping 1,920 samples, was awarded to GeneSeek Inc., part of NeoGen Corp.
We used the Affymetrix Axiom genotyping array to test 55,766 potential SNPs in
Douglas-fir. Because the SNPs were derived from transcriptome sequence, the array
targets SNPs in the expressed genes in the Douglas-fir genome. We collected 1920
needle samples from selected Douglas-fir trees at three progeny sites, four seed
orchards, and one container nursery. DNA from all the samples were successfully
extracted at the US Forest Service’s NFGEL facility, and sent to GeneSeek by the end
of February, 2015. We tested the array on these trees, and found that 22,126 SNPs
could be genotyped with a call rate of 80%.

We planted out the first, or one of the first, genomic selection studies for coastal
Douglas-fir on Roseburg Resources property near Elkton, Oregon, on March 6, 2015.
The 1,420 one-year old seedlings were obtained from 25 full-sib crosses and one
unimproved control. Individual trees are identified so that the seedlings from the
full-sib crosses had DNA samples extracted from them as described above.

This study showed encouraging results of applying genomic selection in coastal
Douglas-fir breeding programs. The predictive abilities of SNP markers were around
0.60 for growth and biofuel product, and 0.75 for branching / stem straightness in
univariate models. For growth traits, accuracies remained high when using models
generating at age 7 to predict phenotypes at age 12. Prediction using multivariate
models were generally more accurate, but the increase of accuracy depends on the
relationship among traits.

This project resulted in four significant conclusions. First, it is possible to
measure biofuel production traits on Douglas-fir trees as part of an operational
tree breeding program. We developed or implemented field, laboratory, and
statistical methods for assessing the genetics of biofuel production traits. Sec-
ond, we demonstrated that there is sufficient genetic variation and heritability
to improve biofuel production traits in Douglas-fir. Thus, breeding programs
aimed at improving biofuel production will be successful. Third, it is possible
to integrate genomic evaluation into operational Douglas-fir breeding pro-
grams. We developed a high-density single nucleotide polymorphism (SNP) ar-
ray for Douglas-fir, which will allow tree breeders to apply genomic techniques
to the genetic improvement of Douglas-fir. Fourth, using the SNP genotyping
array and an approach called genomic prediction, we demonstrated that we
can use genomic evaluation to identify superior genotypes for biofuel produc-
tion and growth traits. This is a significant achievement because SNP-based
approaches can be used to speed the delivery of genetic gain from breeding
programs. This will be particularly important for incorporating new traits,
such as biofuel production, into breeding programs. Overall, we developed a
complete roadmap for using traditional and molecular breeding approaches to
improve Douglas-fir for biofuel production.
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INTRODUCTION

Genetic selection and testing has been applied on timber species in the Pacific North-
west for over 50 years. One result of that work is data and genetic gain predictions

for several traits from replicated, randomized progeny tests for over 30,000 families
of Douglas-fir. A range of phenotypic variation, and some level of genetic control, has
been demonstrated among families for every trait studied, so we expected variation
and genetic control in traits pertaining to biofuel production. Another result is that
over 150,000 timberland acres are reforested annually with seedlings from open-polli-
nated seed orchards, thus delivering real genetic gains (in whatever traits are selected
for) to operational plantations in the PNW. Methods for measuring genetic controlin
commercially important traits (including growth rate and wood properties) are well
developed, so we were able to apply them in this study.

Over the last decade, the cost of using genomic and marker-based tools to com-
plement field-based breeding and testing has dropped rapidly in forest tree spe-
cies. These tools have the potential to improve the efficiency, speed the delivery
of genetic gain, especially given the long times needed for field-based breeding,
and reduce costs. Genomic selection (GS) may transform tree breeding by allow-
ing breeders to shorten the breeding cycle, reduce the costs of progeny testing,
increase heritabilities, and select for mature traits such as wood properties at

the seedling stage. After the first year of the project, NARA leadership decided on
building a SNP chip for Douglas-fir as the main outcome of the genetics part of the
project. We were able to collaborate with the Pacific Northwest Tree Improvement
Research Cooperative at OSU, since that cooperative has identified GS as a main
research focus for the near future.

Having enough markers is critical to the success of genomic selection. The number

of markers needed for genomic selection varies based on the biology of the species,
including the genome length (cM), number of QTL controlling the trait, and trait her-
itability. It also depends on the effective size of the breeding population (Ne), which

is about equal to the number of parents used in the breeding cycle. In Douglas-fir,
2,000 to 40,000 SNPs may be needed for effective population sizes of 25 to 100
(Grattapaglia and Resende, 2011; Iwata et al., 2011; Resende et al., 2012a; Resende
et al., 2012b). Because sublines in typical advanced generation breeding programs
of Douglas-fir have effective population sizes closer to 30, the number of SNPs
needed within such sublines is expected to be about 5,000 to 20,000, depending
on the factors described above and the distribution of the markers in the genome
(reviewed in Howe et al. 2013).

Recent advances by the Conifer Translational Genomics Network (a multi-institu-
tion project for major US conifers) were available to use in this project. Howe et al.
(2013) used transcriptome sequencing to identify 278,979 potential SNPs in ~20,000
Douglas-fir genes, and then tested a subset of these SNPs (n=8067) using an Illumi-
na Infinium genotyping array, resulting in 5847 successful SNPs (i.e., polymorphic
SNPs that can be reliably measured). Although the Infinium array is highly robust,
it is also expensive. Although costs have been decreasing, the cost at the time of
purchase was about $120 per tree. Other, less-expensive genotyping arrays have
become available more recently, most notably, the Axiom array manufactured by
Affymetrix. Although the costs of this array vary widely based on the number of
SNPs assayed and the number of trees genotyped, the entry point was about $75
per tree when we began this this project.

We undertook an expanded/strengthened Task 2 (Identify single nucleotide poly-
morphisms [SNP] genotypes) to use the power of both of these approaches in
tandem, with a state-of-the-science genotyping array based on SNP technology for
marker-based selection of phenotypes conducive to production of biofuels from
woody residuals as a value added trait of trees selected for production of lumber
and other products of saw logs.
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TASK 1: COLLECT WOOD SAMPLES, OBTAIN WOOD
CHEMISTRY DATA, COMBINE WITH EXISTING DATA
ON GROWTH RATE

Task Objective

Some differences of genomic selection from progeny-testing-based selection, and
potential advantages, are outlined by Luan et al. (2009). We therefore attempted
to quantify the phenotypic variation in biofuel production potential in a subset of
Douglas-fir families, pre-selected for commercially important traits such as rapid
growth, adaptability, wood specific gravity and wood stiffness

Methodology

Our first step was prioritization of superior softwood (Douglas-fir) breeding stock.
The progeny test populations most suitable for sampling should (1) have ad-
vanced-generation high-genetic gain germplasm, (2) have trees large enough to
obtain amounts of wood needed for chemical analysis, (3) have good maps and
accession information and (4) be available and accessible to OSU researchers and
contractors. Two second-generation populations in Oregon, T96 (near Toledo) and
CL98 (near Coos Bay), established by Plum Creek Timber Company in 1997 and
1999, respectively, were selected.

As a pilot study, wood cores were obtained from trees from a single half-sib family
and shipped for analysis to WSU/Tri-cities (NARA researcher Xaio Zhang) for setting
baseline carbohydrate, lignin, ash, and total extractives. Core samples (sampled

at breast height) consisted of 18-20 grams fresh weight/sample for initial chemical
analyses and evaluation. Various sampling tools (cordless drills, gas-powered drill,
5mm and 10mm manual corers) were evaluated and compared. The cordless and
gas-powered drills were found adequate to obtain 5mm cores, but inadequate

for taking 10mm cores. A modification was built to improve ease and efficiency of
taking 10 mm cores with the manual corer. Fifty-five (55) different families were se-
lected across the range of gains for growth rate from the T96 population, and then
samples were obtained from a total of 700 trees from three sites. The cores were
measured, weighed and shipped to the Zhang lab at WSU. Enough samples were
obtained to provide 10g of dry wood for analysis. The final set of 150 cores were
dried and ground in a Wiley mill at OSU to free-up time for the Zhang lab to expedite
analysis.

We selected 30 more families and 3 woodsrun lots from the CL98 series as well,
located and visited the Moon Creek progeny test site near Fairview, and collected a
total of 360 samples. These samples were dried and ground at OSU and shipped to
the Zhang lab at WSU for wood chemistry analysis.

Statistical Model and Analyses

Chemical analyses were described in Geleynse et al. (2016). For each trait, a univari-
ate family model was used for estimating variance components and heritability. The
following linear model was fitted using ASReml software:

Yijk = 1+ Fi + M + (FM)y; + &

wherey is the observation of the kth tree from the ith female and jth male parent,
pis the populatlon mean, F.is the random effect of jith female parent, M, is the ran-
dom effect of the jth male effect (FM) is the random effect of the full- 5|b family (ith
female x jth male), and g 1s the random residual. Raw data were transformed byY
=Y x 100 prior to analyses to avoid losing precision. Narrow-sense individual-tree
heritability (n? )was estimated as the ratio of additive genetic variance (V,) to the
total phenotypic variance (V,) among individual trees:

W = Va _ 2(0f +03)
Vo of + 0} +05 +0?

where Ufz , 05, 0%, and a2 are the estimated variance components of female, male,

female x male, and residual effects, respectively. Bivariate analyses were carried

out to estimate genetic correlations between traits using a bivariate family model,

expressed in matrix format:

y=u+Z,f+Z,m+7Z;6+e

where y = [y1,¥2] ,y, and y, are the vectors of individual tree observations for two
traits; 1 = [w, n3] , ¥, and p, are the vectors of fixed means of traits; f = [f, 2], f and
f, are the vectors of random female effects; m = [m3, m3], m and m, are the vectors
of random male effects; & = [87,85], 8, and 8, are the vectors of random female x
male effects; e = [e}, 5], e, and e, are the vectors of random residuals; Z,,Z,, Z, are
incidence matrices connecting the observations to female, male, and female x
male effect, respectively. Variances and covariances were estimated using ASReml
software, and genetic correlations (r ) were calculated within ASReml according to
the standard formulae [10]. The following individual-tree model was carried out for

each trait to predict breeding values for individual trees and parents:

Yije = B+ Aijie + (FM) i + €

DEVELOPING HIGH BIOFUEL COASTAL DOUGLAS-FIR FEEDSTOCKS BY GENETIC SELECTION | FINAL REPORT



NARA

Northwest Advanced Renewables Alliance

where A, is the random additive genetic value of the kth tree from ith female and
jth male parents. This model incorporates the numerator relationship matrix in the
analysis. The random effect solutions were obtained by solving the mixed mod-

el equations. Since the genetic covariance between relatives is provided by the
supplied numerator relationship matrix, the predicted breeding values (PBVs) and
the associated standard errors of prediction (SEPs) were computed for both parents
and progeny simultaneously. PBVs for full-sib families were represented by their
mid-parental PBVs. Genetic gains were predicted as the percentages of PBVs over
the least-square mean of the test populations (woodsruns excluded). Narrow-sense
heritabilities, genetic correlations between traits, and predicted genetic gains for
pretreatment yield, pretreated holocellulose, enzymatic hydrolysis yield, and recal-
citrance factor were predicted for 284 progeny trees, 28 crosses (between 6 and 12
progeny per cross) and 46 parents. 30 woodsrun (unimproved) trees.

Results

Heritabilities ranged from 0.18 to 0.77 (Table GS-1.1), very comparable to many pub-
lished values for other wood properties (jet-fuel related heritabilities have not be
reported before). While specific gravity was favorably correlated with recalcitrance
factor, the genetic correlation was not high enough to be a very reliable predictor
(indirect selection trait).

Table GS-1.1. Narrow-sense individual heritabilities and their standard errors for five wood traits in a Doug-
las-fir breeding population

h; s.e.
Density (SG) 0.315 0.219
Pretreatment Yield (PY) 0.767 0.180
Pretreated Holocellulose (PH) 0.185 0.190
Hydrolysis Yield (HY) 0.496 0.142
Recalcitrance Factor (RF) 0.443 0.136

One of the forward selections had a 40.6% predicted gain in holocellulose yield and
34.7% predicted gain in recalcitrance factor. If instead we were to select existing
seed producing parents, one parent had a 27.0% predicted gain in holocellulose
yield and 21.5% predicted gain in recalcitrance factor (Table GS-1.2).

Table GS-1.2. Genetic correlation coefficients (lower triangle) & their standard errors (upper triangle).

SG PY PH HY RF
SG 0.251 0.241 0.219 0.212
PY 0.048 0.272 0.189 0.253
PH 0.343 -0.021 0.259 0.273
HY 0.325 -0.497 -0.246 0.015
RF 0.402 -0.111 -0.159 0.972

Conclusions/Discussion

The original plan was to assess a large number of families from multiple breeding
populations, but given the costs of chemical analysis, this was not feasible. The
estimates of heritability and predicted genetic gains show that it would be quite
feasible to genetically select Douglas-fir for conversion to jet fuel. Given the sample
sizes, these estimates should not be taken as the last word in genetic parameter
estimates: we would typically want to sample from 100 families and 30 trees per
family on at least three sites to increase our confidence in the estimates. However
these results show a lot of promise.

From the CL98 test population, it would be possible to collect seed from a group of
selected parents and start establishing high jet-fuel plantations in the near future.
However for large-scale implementation into breeding programs in the Pacific
Northwest, it would essential to either (1) identify indirect selection traits that are
less expensive to measure or (2) find ways to simplify and accelerate the measure-
ment of the wood chemistry traits so that we could (3) screen many more popula-
tions and trees.
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TASK 2: IDENTIFY USEFUL SNP GENETIC MARKERS
IN DOUGLAS-FIR THAT CAN BE USED TO ASSOCIATE
WITH USEFUL PHENOTYPIC VARIATIONS IN BIOFUEL
PRODUCTION POTENTIAL AND OTHER COMMERCIALLY
IMPORTANT TRAITS

Task Objective
Establish Pilot GS study, build a new high-capacity Douglas-fir SNP chip and geno-
type trees selected from CL98 population and trees in the pilot GS study

Methodology

Design and Building of Genotyping Array

The contract for building the array (50K SNPs) using the Affymetrix platform, and
for genotyping 1,920 samples, was awarded to GeneSeek Inc. (based in Lincoln,
Nebraska), part of NeoGen Corp (http://www.neogen.com/ Genomics/). Due to the $
amount of the contract and OSU contracting rules, we needed to go through a long
and time-consuming process including a Request for Proposals.

SNP resources

The potential SNPs chosen for the Axiom array were derived from transcriptome
sequencing projects described by Muller et al. (2012 and Howe et al. (2013). We add-
ed the Muller SNPs to increase the number of genes that could be assayed, thereby
increasing genome coverage for genomic selection. The Douglas-fir transcriptome
(454 sequence data) and SNPs identified by Muller et al. (2012) were downloaded
from http://www.treeversity.org by Stephanie Guida (National Center for Genome
Resources). These data contained ~170,000 putative transcripts and ~188,000 SNPs.
We used this information to identify ‘new genes’—that is, genes that were absent
from our transcriptome assembly—and then added the corresponding SNPs to our
SNP database. To identify these new genes, NCGR compared the Muller transcripts
to the Howe transcriptome assembly using BLAST and an e-value cutoff of 1le-10.
Excluding singletons, 63,286 transcripts had no BLAST hits, and were classified as
new genes. Muller et al. (2012) used three SNP detection programs (GSMapper,
ssahaSNP, and bwa SAMtools) to identify 40,206 biallelic SNPs in the 63,286 unique
transcripts described above. Of these 40,206 SNPs, 16,859 were detected by two or
three SNP detection programs, and were the SNPs considered for inclusion on the
genotyping array. These were added to our existing SNP database of 278,979 SNPs
(Howe et al., 2013).

Axiom array design

Two steps were used to filter the combined SNP database described above. First,
we removed SNPs that were highly repeated in the Douglas-fir genome. This was
done by comparing the SNP sequences to a draft of the Douglas-fir ggnome (v0.5)
provided by Jill Wegrzyn (University of Connecticut). Second, we removed SNPs that
had flanking sequences that did not meet minimum Affymetrix criteria for inclusion
on the array (Table GS-2.1).

Table GS-2.1. SNP quality for 221,674 SNPs first submitted to GeneSeek/Affymetrix.

15,384 | recommended on both strands,

38,392 | recommended on the forward strand only

39,388 | recommended on the reverse strand only

31,251 | neutral in both strands

26,947 | neutral in forward strand only, (neutral best result)
27,128 | neutral in reverse strand only, (neutral best result)

42,236 | not-reccommended in both strands

426 not-possible in forward and not-recommended in reverse
521 not-recommended in forward and not-possible in reverse
0 not possible in both strands (This sequence does not have enough non-ambiguous flanking sequence.)

After filtering, we submitted 111,648 SNPs in 21,659 genes to Affymetrix for the final
array design: 108,299 SNPs in 19,336 genes came from the Howe SNP database,
whereas 3,349 SNPs in 2,323 genes came from the Muller SNP database.

Because 111,648 SNPs exceeds the capacity of a 50K SNP array, we prioritized these
SNPs for the final design phase. We ranked the SNPs sent to Affymetrix using various
measures of SNP quality, giving high ranks to target SNPs that were successfully
genotyped using the Infinium array, most likely to be true SNPs, and least likely to
have other SNPs in their flanking sequences Howe et al. (2013). Affymetrix used our
rankings and their proprietary ‘p-convert’ values to choose the final set of 55,766
SNPs representing 21,639 genes that were included on the array. The p-convert
value reflects the probability that a SNP will be assayed reliable using the Axiom
array system. The array also included a set of non-polymorphic ‘control’ probes that
were used to judge array performance. Rich Cronn and Sanjuro Jogdeo developed
these polymorphic sequences by identifying sequences that were identical between
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our Douglas-fir transcriptome and the loblolly pine genome. During processing, the
control probes were used to calculate a quality control metric (DQC) that was used
to identify and remove poor quality samples.

Establishment of Pilot Genomic Selection Study

We developed a 3-generation pilot genomic selection population with elite genetic
material from a cooperative Douglas-fir breeding program, obtained consent from
the breeding program to use the required seed from 3-cycle crosses, obtained
greenhouse space to sow the study in 2014, and agreement by a large industrial
landowner to outplant the study in 2015. The trial (one of the first, genomic selec-
tion studies for coastal Douglas-fir) was sown at the end of March 2014 (1,420 one-
year old seedlings were sown from 25 full-sib crosses and one unimproved control)
and 1,189 seedlings were planted out on Roseburg Resources property near Elkton,
Oregon, on March 25, 2015. The test site was specially prepared and a grid put in for
planting them. Individual trees are identified so that the seedlings from the full-sib
crosses had DNA samples extracted from them as described above.

While phenotypic data from this study will be collected past the timeline of the
NARA project, it will still be an important outcome for Douglas-firimprovement in
the PNW.

DNA Extraction
We collected 1920 needle samples from selected Douglas-fir trees at three progeny
sites, four seed orchards, and one container nursery (Table GS-2.2).

Table GS-2.2. Foliage samples were collected from the following sets of trees to be processed through the
SNP genotyping array

No. of trees Description

291 2”d—cycle CL98 progeny trees used in wood chemistry analysis or pilot genomic selection study
28 CL98 parents with wood chemistry data

46 other 1% generation parents or grandparents of 3 cycle genomic selection crosses

26 2m cycle parents of 3 cycle genomic selection crosses

264 other 2™ cycle progeny, full-sibs of genomic selection study 2"d-cycle parents

1,141 3 cycle progeny (genomic selection study selection population)

124 other parents of future 3" cycle crosses

Each sample consisted of 5-10 green needles. Samples were placed in numbered
14-cm?3vials and 10 cm?® of crystalline silicate desiccant was added immediately
to preserve DNA, and the vials were sealed. All samples were carefully tracked by
spreadsheet.

Subsamples of three needles were taken from each vial, manually minced to
2-3mm lengths, and each sample was carefully loaded into a well in a 96-well DNA
extraction plate (Qiagen DNeasy 96 Plant DNA kit). The location of each sample in
each plate was carefully recorded. The loaded plates were transported to the USDA
Forest Service National Forest Genetics Electrophoresis Laboratory (NFGEL) in Pla-
cerville, CA for extraction. The DNA extraction process followed the instructions in
the Qiagen DNeasy kit. Extraction success was quantified using SYBR intercalating
dye (Pico Green); any extraction producing less than 10ng DNA/uL was re-extracted.
1920 samples were successfully extracted at the NFGEL facility, dried down and
shipped to Geneseek Corp., Lincoln, NE for SNP analysis.

Results

We measured 55,766 potential SNPs on 1,920 samples using the Axiom array. Of the
1,920 DNA samples submitted to GeneSeek, 1,866 passed DQC standards and 1,694
passed DQC, Plate QC and call rate QC rates (226 samples did not pass). Table GS-
2.3 shows the number of SNPs falling into six SNP quality categories: PolyHighRes-
olution, NoMinorHom, OTV, MonoHighRes, and CallRateBelowThreshold. The call
rate (CR) is an important measure of SNP quality. CR is the proportion of trees that
can be assigned a reliable genotype (called) relative to the total number of trees
genotyped. The average call rate for the passing samples was 99.01%.

We worked with Affymetrix bioinformaticists to develop protocols to ‘rescue’ SNPs
that previously did not pass the default Affymetrix quality control criteria (e.g., 97%
call rate). Forinstance, lowering the call rate threshold from 97% to 60% using

the new custom R scripts increased the number of successful SNPs from 16,177 to
24,192 in one population, and from 18,932 to 25,881 in another. We used a subset of
427 unrelated trees to calculate SNP population genetic statistics. Over a range of
call rate thresholds (60% to 97%), the median call rate for SNPs in Hardy-Weinberg
equilibrium ranged from 99.1% to 100.0%, and the median minor allele frequency
ranged from 0.196 to 0.236. Based on a small number of samples, the successful
SNPs also work well on Interior Douglas-fir. The Axiom genotyping array will serve
as an excellent foundation for studying the population genomics of Douglas-fir and
for implementing genomic selection.
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Table GS-2.3. SNPs available to practice genomic selection in Douglas-fir. This table shows the number of SNPs that were classified into six SNP quality groups (PolyHighResolution,
NoMinorHom, OTV, MonoHighRes, and CallRateBelowThreshold) using an Affymetrix Axiom genotyping array. For each SNP, the call rate (CR) is the proportion of trees that were as-
signed a genotype (called) relative to the total number of trees tested (n = 1,694).

No. of SNPs with
call rate (CR) of:

Classification 97% Affymetrix abbreviation: description

Polymorphic high resolution 16,177 PolyHighResolution: These are the very best SNPs because they vary among trees (are
polymorphic) and can be measured very accurately (are high-resolution). These SNPs
pass all thresholds (CR.cut >= 97; FLD.cut >= 3.6; HetSO.cut >= -0.1; HomRO2.cut
>= 0.3; HomRO3.cut >= 0.9; nMinorAllele.cut >= 2).

No minor homozygote 4,786 NoMinorHom: Minor alleles were found, but no minor homozygotes. Many of these are
probably true SNPs, but the MAF may be too low to be valuable for genomic selection.

Monomorphic high 10,141 MonoHighResolution: These SNPs are high-resolution, but they did not vary among

resolution trees (not polymorphic). They may not be true SNPs or the minor allele frequency may
be very low, and not valuable for genomic selection.

Converted 31,104 This number (PolyHighResolution + NoMinorHom + MonoHighResolution) is a good
indication of the success of the SNP genotyping platform itself.

Off-target variant 1,170 OTV: OTVs usually indicate that the DNA hybridized poorly to the genotyping array,
perhaps because of other unknown SNPs near the target SNP. It may be possible to
measure these SNPs after using the OTV_Caller program to re-call the genotypes.

Other 18,817 Other: These SNPs did not pass various quality thresholds for various reasons.

Call rate below threshold 4,675 CallRateBelowThreshold: The SNP was below the 97% or 80% CR threshold, but the SNP
passed all other thresholds except that the number of minor alleles was ignored. For
genomic selection, a CR of 85% is probably more than sufficient (Rutkoski et al. 2013).

Not converted 24,662 OTV + Other + CallRateBelowThreshold

Total 55,766 Total number of SNPs attempted on the ‘50K’ genotyping array.

Conclusions/Discussion

SNPs classified as polymorphic and high-resolution (PolyHighResolution) are the
ones that should work best for genomic selection. Using the default Affymetrix CR of
97%, 16,177 SNPs fell into this category (Table GS-2.3). However, for genomic selec-
tion, a CR of 85% is probably more than sufficient (Rutkoski et al. 2013). Therefore,
we are now investigating genomic selection using lower CR thresholds and, thus,

greater numbers of SNPs.

Two other categories of SNPs (NoMinorHom and MonoHighResolution) probably
contain many true SNPs that can be measured reliably. However, their minor alleles
may be too low for making them particularly valuable or genomic selection, at
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least in the populations we tested. Nonetheless, if we count all three categories of
‘converted’ SNPs (PolyHighResolution, NoMinorHom, and MonoHighResolution),
we have about 30K SNPs that could contribute to the success of genomic selection.
On the other hand, many of these may not be of sufficient quality, and we may need
to exclude other SNPs in the PolyHighResolution category because of other issues,
such as deviations from Hardy-Weinberg equilibrium. Balancing these consider-
ations, and based on ongoing analyses, we conclude that we have between 20K
and 30K SNPs that will allow us to practice genomic selection in Douglas-fir. This

is probably more SNPs than are needed to practice effective genomic selection in

NWTIC-type breeding programs.
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TASK 3: MAKE SELECTIONS FOR INCREASED BIOFUEL
PRODUCTION USING A COMBINATION OF PHENOTYPIC
AND SNP GENETIC MARKER DATA.

Task Objective

In this study, we applied Genomic Selection (GS) to coastal Douglas-fir to investigate
the accuracy and selection efficiency for the phenotypes of growth rate, biofuel prod-
uct, wood chemistry properties, and branching characterless, by using SNP markers.

Methodology

This study was carried out using two series of coastal Douglas-fir full-sib progeny
trials (previously described i.e. SCC and CL98) as training / validation populations.
The overall objective was to explore the potential of accelerating breeding cycles of
Douglas-fir through genomic selection. In this process, 640 trees were genotyped
using an Axiom 55K SNP array with Call Rate (CR) = 80%. All monomorphic SNP
markers were excluded, but SNPs with rare alleles were retained. As a result, a total
of 22,126 polymorphic SNPs were used.

The marker effects and, therefore, GEBVs were estimated using best linear unbiased
prediction model (GBLUP). Our preliminary study indicated that the differences in
PA between GBLUP and various Bayesian models (e.g., BL, BRR, BayesA, BayesB,
and BayesC) were small for all the traits studied.

To assess prediction accuracy (PA) of GS, we used 10 replications of 10-fold
cross-validation where 90% of the total population was used as a training popula-
tion and 10% as the validation population. The PA was calculated as the mean Pear-
son correlation between the EBVs from pedigree-based models and the GEBVs from
the GS models. The relative efficiency (RE) of GS to TS was estimated by comparing
PAs from both schemes, assuming that the length of breeding cycle in GS is half of
that in TS as a result of early selection.

For each of the 19 traits studied, we trained univariate genomic selection (UVGS)
models with EBVs and validated GEBVs using the same (direct UVGS) or different
(indirect UVGS) traits. In addition, we examined the consequences of including
dominance variation in the UVGS models.

Since tree breeding programs normally deal with multiple trait selection, and some
traits are difficult to evaluate, expensive, or they need a large sample size, we also
evaluated and compared the accuracy of genomic predictions using multivariate
genomic selection (MVGS) models. The following four scenarios were analyzed using
MVGS models: (1) Training on TB, RF, SG, or VOL12; validated on TB, (2) Training on
TB, RF, PY, or HY; validated on TB, (3) Training on HT12, HT7, DBH7, or VOL; validated
on HT12, and (4) Training on HT12, HT7, DBH7, or VOL; validated on VOL12.

Results

The PAs from direct UVGS were relatively high for all the traits studied, ranging from
0.57 t0 0.79 (Table GS-3.1). For example, the PA was 0.65 for age-12 height (HT12)
and 0.64 for total biofuel product (TB) (Figures GS-3.1 and GS-3.2). The correspond-
ing REs of GS to TS, assuming a conservative reduction of 50% in the length of the
breeding cycle, were 1.79 and 1.92 respectively (Table GS-3.2, Figure GS-3.3), high-
lighting the increase in efficiency per unit time.

Table GS-3.1. Accuracy of genomic additive (A) and additive + dominance (AD) models for direct (i.e., same
traitin training and validation) and indirect (i.e., different traits in training and validation) genomic predic-
tions. HT, DBH, VOL, FORK, RAMI, SINU, and NRY are total height, diameter at breast height, volume index,
number of incidents of forks, number of incidents of ramicorns, stem sinuosity score, and estimated years

of needle retention, respectively. The trailing numbers refer to measurement ages. Age-17 wood chemistry
traits include HY (hydrolysis yield), PH (pretreated holocellulose fraction), PY (pretreatment yield), RF (recalci-
trance factor), and SG (specific gravity). TB is an index of total biofuel product calculated as VOL12 x SG x RF.

| Training Validation trait
Model tait [ DBH12  DBH7  FORKI2  FORK7  HT12 HT7 HY NRY7 PH PY  RAMI2  RAMIZ RF G SINUL2 SINU7 i voLi2 Vo7
DBHI2 | 0586 0588 0285 0333 0256 0229  -0.198 0177 0024 0244 0427 0383 0147 0339 0284 0244 0188 0534 0529
DBH7 | 0551 0674 0445 0583 039 0420 0037 0528 0497 0225 0074 0545 0625
FORK12 | 0220 0384 0766 0611 0327 0321 0079 0132 0153 0006 0500 0456 0067 0089 0257 0105 0252 0297 0405
FORK7 | 0264 ~ 0492 0615 0765 0363 0323 0035 0268 0161 0091 0529 0499  -0041 0093 0217 0139 0283 0329 0485
HT12 | 0225 0363 0367 0409 0650 0567 0079 0107 0041 0124 0191 023 0053 0019 0199 0151 0194 0371 0463
HT7 0214 0412 0389 0385 0604 0611 0035 0006 0039 0102 0201 0271 0001 0014 0199 0131 0222 0355 0499

HY 0,185 0128 0050 0087 0085 0599 0205 0446 0121 0154 0557  -0066 0113  -0.113 0125  -0.187
NRY7 | 0212 0069 0181 0376 0114 0012 079 0069 0.156 0055 0015 0178 0073

PH 0019 0141 0170 008 0104  -0.199 0689 0024 0060 0079 0119 0188 0021 0021  -0062 0073

A Py 0263 0011 009 0150 0144  -0.423 0019 0633 0262 0276 0317 0023 0051 0047 -0.106 0253
RAMIT2 | 0336 0438 0489 0515 0169 0171 0080 0058 0060  -0230 0784 0707 0032 0079 0213 0118 0265 0326 0390
RAMI7 | 0309 0428 0461 0503 0215 0232 0124 0128 0080 0226 0733 0738 009  -009% 0223 0130 0253 0315 0403

RF 0415 0110 0041 0029 0023 0567 0114 0348 009 0128 0570 0067 0144 0142 0120  -0.111

G 0345 0102 0121 0086 0064  -0.065 0201 0013 -0130 0146  -0065 0582 0126 -0.133 0141 0256
SINU12 | 0246 0259 0273 0229 0187 018  -0071 009  -0008 0051 0238 0239 0095 0082 0727 0669 0143 0269 0251
SINU7 | 0206 0117 0116 0148 0141 0123 0085 0016  -0010 0049 0132 013 0112 0103 0648 0750 0131 0212 0102

] 0219 0250 0298 0176 0175  0.103 0068 0106 0318 0295 0097 -0134 0102 0119 0642 0282
vol12 | 0545 0580 0393 0420 0425 0378 0188 0172 0055 0220 0420 0394  -0.139 0294 0319 0262 0273 0569 0581
Vo7 | 0518 0639 0488 0588 0523 0521 0057 0477 0476 0221 0065 0568 0.644
DBHIZ | 0586 0581 0290 0335 0250 0222 0188 0202 0025 0230 0431 0388 0141 0343 0290 0250 0183 0533 0524
DBH7 | 0533 065 0431 0567 0393 0407 0.049 0517 0486 0218 0073 0531 0606
FORK12 | 0228 0383 0785 0621 0324 0315 0094 0138 0146 0014 0516 0477  -0083 0068 0278 0131 0263 0302 0403
FORK7 | 0267 0493 0621 0769 0366 0322 0043 025 0158 0075 0529 0499  -0.045 0081 0216 0140 0275 0333 0489
HT12 | 0229 0358 0372 0409 0650 0568  -0072 0084 0037 0110 0194 0237  -0045 0013 0195 0149 0198 0376  0.460
HT7 0211 0400 0388 0379 0599 0603 0060 0008 0037 0106 0200 0271  -0.024  -0008 0204 0138 0213 0350 0482

HY 0179 0137 0056 0085 0083 0606 0212 0453 0134 0167 0563 0074 0115 0116 0108  -0.187
NRY7 | 0209 0057 019 0393 0108  -0.012 0783 0103 0185 0057 0011 0176 0.060

PH 0013 0126 0160 0088 0110  -0.193 0685 0017 0062 0081 0111 0189  -0.026 002  -0.065 0071

AD Py 0261 0012 0093 0140 0136 0426 0019 063 0273  -028¢ 0319 0019  -0034 0030 -0.09% 0246
RAMIL2 | 0339 0435 0501 0523 0169 0165 0088 0041 0078 023 079 0722 0044 0095 0229 0132 0263 0324 0380
RAMI7 | 0319 0416 0481 0514 0217 0233 0140 0132 0075 0247 0753 0759 0101  -0111 0242 0146 0272 0320 0390

RF 0123 0105 0034 0032 0024 0580 0125 0344 0074 0116 0585  -0069 0161  -0.159 0113  -0.119

6 0355 0092 0117 0063 003  -0.053 0205 0020 0124 0139 0053 0590 0126 -0.132 0143 0275
SINU12 | 0248 0265 0294 0243 0181 0183  -0082 0083 0009 0049 0254 0259 0107 0111 0742 0672 0130 0266 0255
SINU7 | 0206 0103 0126 0153 0128 0113 0092  -0005 0007 0026 0142 0150 0117  -0100 0658 0759 0130 0208 0087

i) 0228 0250 0296 0178 0177 0100 0077 0102 0312 0289 0093  -0150 0100 0117 0639 0289
vol12 | 0543 0580 0392 0423 0423 0377 0177 0157 0045 0208 0423 0400 0132 0299 0318 0260 0264 0567 0583
Vo7 | 0506 0628 0481 0584 0508 0511 0.060 0476 0477 0217 0062 0555 0638
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Figure GS-3.1. Mean prediction accuracy (PA) for age-12 height (HT12) and total biofuel product (TB).
Figure GS-3.3. Mean relative efficiency of genomic selection to traditional selection for age-12 height (HT12)

and total biofuel product (TB).

r=0.53 r=0.69 r=0.67 r=0.45
Table GS-3.2. Relative efficiency of genomic selection (GS) to traditional selection (TS) based on genomic
additive (A) and additive + dominance (AD) models for direct (i.e., same trait in training and validation) and
indirect (i.e., different traits in training and validation) genomic predictions, assuming that the length of
- breeding cycle in GSis half of that in TS. HT, DBH, VOL, FORK, RAMI, SINU, and NRY are total height, diameter
i " HT12 at breast height, volume index, number of incidents of forks, number of incidents of ramicorns, stem sinuos-
12 r=0.74 r=0.68 r=0.73 =0.64 ity score, and estimated years of needle retention, respectively. The trailing numbers refer to measurement
ages. Age-17 wood chemistry traits include HY (hydrolysis yield), PH (pretreated holocellulose fraction), PY
(pretreatment yield), RF (recalcitrance factor), and SG (specific gravity). TB is an index of total biofuel product
calculated as VOL12 x SG x RF.
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The indirect UVGS revealed interesting patterns. For height and volume growth at . Results indicated that the additive model (A) and the combined additive and dom-

age 12, the models developed at age 7 and age 12 performed equally well in predict-  : inance model (AD) produced similar predictive abilities for all traits (Figure GS-3.5),
ing the growth at age 12 (Figure GS-3.4). For example, the PA was 0.6 for the model : despite the fact that dominance variation did contribute some genetic variance in
trained on HT7 and validated on HT12. This number was almost the same as the PA . some traits. This suggests that there is little merit of including genomic dominance
(=0.61) from the direct GS on HT12. For wood chemistry and biofuel traits, however, . effectsin the GBLUP prediction models.
PAs from indirect GS were generally much lower than that from the direct GS. :
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Figure GS-3.4. Mean prediction accuracy (PA) for all traits when training on age-7 height (HT12), and age-12 Figure GS-3.5. Mean prediction accuracy (PA) in direct GS: additive (A) vs. Additive + dominance (AD) models.

volume (VOL12).
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MVGS provided higher PA and RE in each scenario (Figures GS-3.6 and GS-3.7); all
were higher than their respective cross-validated UVGS results. It appears that MVGS
exploits even weak trait correlations, and provided improved accuracy in a time and

cost manner thus increasing genetic gain from selection among untested genotypes.
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Figure GS-3.6. Comparisons of mean prediction accuracy in univariate / multivariate analyses.
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Conclusions/Discussion

In conclusion, this study showed encouraging results of applying genomic selec-
tion in coastal Douglas-fir. Remarkable gain can be achieved by incorporating
genomic selection in breeding programs. The predictive abilities of SNP markers
were around 0.60 for growth and biofuel product, and 0.75 for branching / stem
straightness in univariate models. They are comparable to the accuracies estimated
in the pedigree-based TS. For example 0.710 for HT12 (compared to 0.710 by pedi-
gree-based selection), and .62 vs. .69 for VOL12.

For growth traits, accuracies remained high when using models generating at age 7
to predict phenotypes at age 12. For age-12 growth and branching traits, genomic
selection models trained at age-7 had similar predictive abilities as models trained
at age-12. Prediction using multivariate models were generally more accurate, but
the increase of accuracy depends on the relationship among traits.

Assuming that the length of breeding cycle in genomic selection is half of that in
field-based selection, the relative efficiency of genomic selection to field-based =
200%. Prediction accuracies from some other studies in forestry species were as
follows: Loblolly pine (Resende Jr et al., 2012): 0.63 - 0.74 for HT6, 0.65 - 0.75 for
DBH6; Eucalyptus (Resende et al., 2012): 0.73 - 0.79 for HT3, 0.65 - 0.78 for SG4;
Maritime pine (Isik et al. 2016): 0.47 for HT12, 0.43 for DBH12; Loblolly pine (Re-
sende Jr et al. 2012): 0.39 for HT, 0.46 for DBH; Interior spruce (Ratcliffe et al., 2015):
0.37 - 0.47 for HT (ages 3 - 40).

We have tried to optimize prediction procedures in genomic selection in the follow-
ing ways:

e Compare different statistical approaches: GBLUP vs. Bayesian methods:
GBLUP method performed equally well as Bayesian methods in general.

e Add non-additive component to the additive genomic selection model:
Including non-additive component in the genomic selection model did
not improve prediction accuracy for most traits. For FORK12, SINU12 and
SINU7, Adding dominance effect into the genomic selection model boosted
prediction accuracy by 13 - 31%.

o Use multiple-trait models to make use of among-trait correlations: Multi-
ple-trait models are better than single-trait models even when the among-
trait correlations were weak. However, multiple-trait models show no
benefit for predicting new individuals without any phenotypic information.

o Use asubset of SNP markers to reduce genotyping cost: It appears that simi-
lar predictive ability can be reached by using only a subset of SNP markers
(~3K).

The results from this study should motivate implementation of genomic selection in
Douglas-fir cooperative breeding programs.
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There are several outstanding issues for genomic selection in Douglas-fir:

*  What is the optimal size / age / type of reference population? The efficiency
of genomic selection largely depends on the design of the reference popu-
lation.

*  Candifferent breeding zones or regions share the same genomic selection
model? Our data are only relevant to a single breeding zone. A study in lob-
lolly pine also showed that prediction accuracy remained high across sites
as long as they were used within the same breeding zones.

*  How many generations does a genomic selection model need to be re-
trained? Results from dairy cattle breeding suggested that prediction
accuracy eroded quickly with generations.

What is the cost-benefit analysis (genomic selection vs. TS)?

The genotyping cost was $75 / tree, the DNA extraction probably added $5-10
more per tree. In contrast, growing, planting, measuring a Douglas-fir progeny
tree is about $10-20 / tree. However, relative benefits of genomic selection for
Douglas-fir may be higher than other important conifer species (e.g., radiata pine,
southern pines, and eucalypts). The testing cycle is longer for Douglas-fir, and
testing costs much higher (fencing is needed ). The crucial breakthrough would be
decreasing genotyping costs (e.g., fewer SNPs, larger volume, etc.).
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The estimates of heritability and predicted genetic gain show that it would be quite
feasible to genetically select Douglas-fir for conversion to jet fuel. Given the sample
sizes, these estimates should not be taken as the last word in genetic parameter
estimates: we would typically want to sample from 100 families and 30 trees per
family on at least three sites to increase our confidence in the estimates. However
these results show a lot of promise.

From the CL98 test population, it would be possible to collect seed from a group of
selected parents and start establishing high jet-fuel plantations in the near future.
However for large-scale implementation into breeding programs in the Pacific
Northwest it would essential to either (1) identify indirect selection traits that are
less expensive to measure or (2) find ways to simplify and accelerate the measure-
ment of the wood chemistry traits so that we could (3) screen many more popula-
tions and trees.

This study sets the stage for the application of high-density genotyping and genomic
selection in coastal Douglas-fir in the Pacific Northwest. The results from this study
was very promising, since a 50% increase in selection efficiency by shifting to GS
would substantially increase the rate of delivering genetic gain to Douglas-fir breed-
ing programs. There would need to be reductions in the cost of genotyping, however,
since GS is not necessarily less expensive than progeny-test based breeding.

FUTURE DEVELOPMENT

In the future, we plan to optimize the prediction procedures in GS in terms of popula-
tion sampling strategy, cost-effective genotyping strategy, and consideration of G x E
effect (e.g., GS at very early stage, across wide range of test sites, etc.). We will explore
the possibility of replacing the individual-tree model used since 2003 with single-step
model by combining genotypes, phenotypes, and pedigree. We also plan to conduct
cost analysis for incorporating GS into Douglas-fir breeding programs.
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