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Narrow-sense heritabilities, genetic correlations between traits, and predicted 
genetic gains for pretreatment yield, pretreated holocellulose, enzymatic hydrolysis 
yield, and recalcitrance factor were predicted for 284 progeny trees, 30 woods-
run (unimproved) trees, 28 crosses (between 6 and 12 progeny per cross) and 46 
parents. Heritabilities ranged from 0.18 to 0.77, very comparable to many publica-
tions for other wood properties (jet-fuel related heritabilities have not be reported 
before). While specific gravity was favorably correlated with recalcitrance factor, 
the genetic correlation was not high enough to be a very reliable predictor (indirect 
selection trait). One of the forward selections had a 40.6% predicted gain in holo-
cellulose yield and 34.7% predicted gain in recalcitrance factor. If instead we were 
to select existing seed producing parents, one parent had a 27.0% predicted gain in 
holocellulose yield and 21.5% predicted gain in recalcitrance factor.

The contract for building the array (50K SNPs) using the Affymetrix platform, and 
for genotyping 1,920 samples, was awarded to GeneSeek Inc., part of NeoGen Corp. 
We used the Affymetrix Axiom genotyping array to test 55,766 potential SNPs in 
Douglas-fir. Because the SNPs were derived from transcriptome sequence, the array 
targets SNPs in the expressed genes in the Douglas-fir genome. We collected 1920 
needle samples from selected Douglas-fir trees at three progeny sites, four seed 
orchards, and one container nursery. DNA from all the samples were successfully 
extracted at the US Forest Service’s NFGEL facility, and sent to GeneSeek by the end 
of February, 2015. We tested the array on these trees, and found that 22,126 SNPs 
could be genotyped with a call rate of 80%.  

We planted out the first, or one of the first, genomic selection studies for coastal 
Douglas-fir on Roseburg Resources property near Elkton, Oregon, on March 6, 2015. 
The 1,420 one-year old seedlings were obtained from 25 full-sib crosses and one 
unimproved control. Individual trees are identified so that the seedlings from the 
full-sib crosses had DNA samples extracted from them as described above. 

This study showed encouraging results of applying genomic selection in coastal 
Douglas-fir breeding programs. The predictive abilities of SNP markers were around 
0.60 for growth and biofuel product, and 0.75 for branching / stem straightness in 
univariate models. For growth traits, accuracies remained high when using models 
generating at age 7 to predict phenotypes at age 12. Prediction using multivariate 
models were generally more accurate, but the increase of accuracy depends on the 
relationship among traits.

This project resulted in four significant conclusions. First, it is possible to 
measure biofuel production traits on Douglas-fir trees as part of an operational 
tree breeding program. We developed or implemented field, laboratory, and 
statistical methods for assessing the genetics of biofuel production traits. Sec-
ond, we demonstrated that there is sufficient genetic variation and heritability 
to improve biofuel production traits in Douglas-fir. Thus, breeding programs 
aimed at improving biofuel production will be successful. Third, it is possible 
to integrate genomic evaluation into operational Douglas-fir breeding pro-
grams. We developed a high-density single nucleotide polymorphism (SNP) ar-
ray for Douglas-fir, which will allow tree breeders to apply genomic techniques 
to the genetic improvement of Douglas-fir. Fourth, using the SNP genotyping 
array and an approach called genomic prediction, we demonstrated that we 
can use genomic evaluation to identify superior genotypes for biofuel produc-
tion and growth traits. This is a significant achievement because SNP-based 
approaches can be used to speed the delivery of genetic gain from breeding 
programs. This will be particularly important for incorporating new traits, 
such as biofuel production, into breeding programs. Overall, we developed a 
complete roadmap for using traditional and molecular breeding approaches to 
improve Douglas-fir for biofuel production.

EXECUTIVE SUMMARY
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Genetic selection and testing has been applied on timber species in the Pacific North-
west for over 50 years. One result of that work is data and genetic gain predictions 
for several traits from replicated, randomized progeny tests for over 30,000 families 
of Douglas-fir. A range of phenotypic variation, and some level of genetic control, has 
been demonstrated among families for every trait studied, so we expected variation 
and genetic control in traits pertaining to biofuel production. Another result is that 
over 150,000 timberland acres are reforested annually with seedlings from open-polli-
nated seed orchards, thus delivering real genetic gains (in whatever traits are selected 
for) to operational plantations in the PNW. Methods for measuring genetic control in 
commercially important traits (including growth rate and wood properties) are well 
developed, so we were able to apply them in this study. 

Over the last decade, the cost of using genomic and marker-based tools to com-
plement field-based breeding and testing has dropped rapidly in forest tree spe-
cies. These tools have the potential to improve the efficiency, speed the delivery 
of genetic gain, especially given the long times needed for field-based breeding, 
and reduce costs. Genomic selection (GS) may transform tree breeding by allow-
ing breeders to shorten the breeding cycle, reduce the costs of progeny testing, 
increase heritabilities, and select for mature traits such as wood properties at 
the seedling stage. After the first year of the project, NARA leadership decided on 
building a SNP chip for Douglas-fir as the main outcome of the genetics part of the 
project. We were able to collaborate with the Pacific Northwest Tree Improvement 
Research Cooperative at OSU, since that cooperative has identified GS as a main 
research focus for the near future. 

Having enough markers is critical to the success of genomic selection. The number 
of markers needed for genomic selection varies based on the biology of the species, 
including the genome length (cM), number of QTL controlling the trait, and trait her-
itability. It also depends on the effective size of the breeding population (Ne), which 

is about equal to the number of parents used in the breeding cycle. In Douglas-fir, 
2,000 to 40,000 SNPs may be needed for effective population sizes of 25 to 100 
(Grattapaglia and Resende, 2011; Iwata et al., 2011; Resende et al., 2012a; Resende 
et al., 2012b).  Because sublines in typical advanced generation breeding programs 
of Douglas-fir have effective population sizes closer to 30, the number of SNPs 
needed within such sublines is expected to be about 5,000 to 20,000, depending 
on the factors described above and the distribution of the markers in the genome 
(reviewed in Howe et al. 2013).

Recent advances by the Conifer Translational Genomics Network (a multi-institu-
tion project for major US conifers) were available to use in this project. Howe et al. 
(2013) used transcriptome sequencing to identify 278,979 potential SNPs in ~20,000 
Douglas-fir genes, and then tested a subset of these SNPs (n=8067) using an Illumi-
na Infinium genotyping array, resulting in 5847 successful SNPs (i.e., polymorphic 
SNPs that can be reliably measured). Although the Infinium array is highly robust, 
it is also expensive. Although costs have been decreasing, the cost at the time of 
purchase was about $120 per tree. Other, less-expensive genotyping arrays have 
become available more recently, most notably, the Axiom array manufactured by 
Affymetrix. Although the costs of this array vary widely based on the number of 
SNPs assayed and the number of trees genotyped, the entry point was about $75 
per tree when we began this this project.  

We undertook an expanded/strengthened Task 2 (Identify single nucleotide poly-
morphisms [SNP] genotypes) to use the power of both of these approaches in 
tandem, with a state-of-the-science genotyping array based on SNP technology for 
marker-based selection of phenotypes conducive to production of biofuels from 
woody residuals as a value added trait of trees selected for production of lumber 
and other products of saw logs. 

INTRODUCTION 
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Task Objective
Some differences of genomic selection from progeny-testing-based selection, and 
potential advantages, are outlined by Luan et al. (2009). We therefore attempted 
to quantify the phenotypic variation in biofuel production potential in a subset of 
Douglas-fir families, pre-selected for commercially important traits such as rapid 
growth, adaptability, wood specific gravity and wood stiffness

Methodology
Our first step was prioritization of superior softwood (Douglas-fir) breeding stock. 
The progeny test populations most suitable for sampling should (1) have ad-
vanced-generation high-genetic gain germplasm, (2) have trees large enough to 
obtain amounts of wood needed for chemical analysis, (3) have good maps and 
accession information and (4) be available and accessible to OSU researchers and 
contractors. Two second-generation populations in Oregon, T96 (near Toledo) and 
CL98 (near Coos Bay), established by Plum Creek Timber Company in 1997 and 
1999, respectively, were selected. 

As a pilot study, wood cores were obtained from trees from a single half-sib family 
and shipped for analysis to WSU/Tri-cities (NARA researcher Xaio Zhang) for setting 
baseline carbohydrate, lignin, ash, and total extractives. Core samples (sampled 
at breast height) consisted of 18-20 grams fresh weight/sample for initial chemical 
analyses and evaluation. Various sampling tools (cordless drills, gas-powered drill, 
5mm and 10mm manual corers) were evaluated and compared. The cordless and 
gas-powered drills were found adequate to obtain 5mm cores, but inadequate 
for taking 10mm cores. A modification was built to improve ease and efficiency of 
taking 10 mm cores with the manual corer. Fifty-five (55) different families were se-
lected across the range of gains for growth rate from the T96 population, and then 
samples were obtained from a total of 700 trees from three sites. The cores were 
measured, weighed and shipped to the Zhang lab at WSU. Enough samples were 
obtained to provide 10g of dry wood for analysis. The final set of 150 cores were 
dried and ground in a Wiley mill at OSU to free-up time for the Zhang lab to expedite 
analysis.

We selected 30 more families and 3 woodsrun lots from the CL98 series as well, 
located and visited the Moon Creek progeny test site near Fairview, and collected a 
total of 360 samples. These samples were dried and ground at OSU and shipped to 
the Zhang lab at WSU for wood chemistry analysis.

Statistical Model and Analyses
Chemical analyses were described in Geleynse et al. (2016). For each trait, a univari-
ate family model was used for estimating variance components and heritability. The 
following linear model was fitted using ASReml software:

where yijk is the observation of the kth tree from the ith female and jth male parent, 
µ is the population mean, Fi is the random effect of ith female parent, Mj is the ran-
dom effect of the jth male effect, (FM)ij is the random effect of the full-sib family (ith 
female x jth male), and εijk is the random residual. Raw data were transformed by Y 
= Y × 100 prior to analyses to avoid losing precision. Narrow-sense individual-tree 
heritability (
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)was estimated as the ratio of additive genetic variance (VA) to the 
total phenotypic variance (VP) among individual trees:
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 are the estimated variance components of female, male, 
female x male, and residual effects, respectively.  Bivariate analyses were carried 
out to estimate genetic correlations between traits using a bivariate family model, 
expressed in matrix format:

where y = [y$% , y'% ]  µ = [µ$% , µ'% ]    [f = [f$' , f'' ],					m = [m$
% ,m'

% ]  δ = [δ$% , δ'% ]   e = [e$% , e'% ],  , y1 and y2 are the vectors of individual tree observations for two 
traits; y = [y$% , y'% ]  µ = [µ$% , µ'% ]    [f = [f$' , f'' ],					m = [m$

% ,m'
% ]  δ = [δ$% , δ'% ]   e = [e$% , e'% ],  , µ1 and µ2 are the vectors of fixed means of traits; y = [y$% , y'% ]  µ = [µ$% , µ'% ]    [f = [f$' , f'' ],					m = [m$

% ,m'
% ]  δ = [δ$% , δ'% ]   e = [e$% , e'% ],  , f1 and 

f2 are the vectors of random female effects; y = [y$% , y'% ]  µ = [µ$% , µ'% ]    [f = [f$' , f'' ],					m = [m$
% ,m'

% ]  δ = [δ$% , δ'% ]   e = [e$% , e'% ],  , m1 and m2 are the vectors 
of random male effects; y = [y$% , y'% ]  µ = [µ$% , µ'% ]    [f = [f$' , f'' ],					m = [m$

% ,m'
% ]  δ = [δ$% , δ'% ]   e = [e$% , e'% ],  , δ1 and δ2 are the vectors of random female × 

male effects; y = [y$% , y'% ]  µ = [µ$% , µ'% ]    [f = [f$' , f'' ],					m = [m$
% ,m'

% ]  δ = [δ$% , δ'% ]   e = [e$% , e'% ],  , e1 and e2 are the vectors of random residuals; Z1, Z2, Z3 are 
incidence matrices connecting the observations to female, male, and female x 
male effect, respectively. Variances and covariances were estimated using ASReml 
software, and genetic correlations (rg) were calculated within ASReml according to 
the standard formulae [10]. The following individual-tree model was carried out for 
each trait to predict breeding values for individual trees and parents:

TASK 1: COLLECT WOOD SAMPLES, OBTAIN WOOD  
CHEMISTRY DATA, COMBINE WITH EXISTING DATA  

ON GROWTH RATE
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where Aijk is the random additive genetic value of the kth tree from ith female and 
jth male parents. This model incorporates the numerator relationship matrix in the 
analysis. The random effect solutions were obtained by solving the mixed mod-
el equations. Since the genetic covariance between relatives is provided by the 
supplied numerator relationship matrix, the predicted breeding values (PBVs) and 
the associated standard errors of prediction (SEPs) were computed for both parents 
and progeny simultaneously. PBVs for full-sib families were represented by their 
mid-parental PBVs. Genetic gains were predicted as the percentages of PBVs over 
the least-square mean of the test populations (woodsruns excluded). Narrow-sense 
heritabilities, genetic correlations between traits, and predicted genetic gains for 
pretreatment yield, pretreated holocellulose, enzymatic hydrolysis yield, and recal-
citrance factor were predicted for 284 progeny trees, 28 crosses (between 6 and 12 
progeny per cross) and 46 parents. 30 woodsrun (unimproved) trees.

Results
Heritabilities ranged from 0.18 to 0.77 (Table GS-1.1), very comparable to many pub-
lished values for other wood properties (jet-fuel related heritabilities have not be 
reported before). While specific gravity was favorably correlated with recalcitrance 
factor, the genetic correlation was not high enough to be a very reliable predictor 
(indirect selection trait). 

One of the forward selections had a 40.6% predicted gain in holocellulose yield and 
34.7% predicted gain in recalcitrance factor. If instead we were to select existing 
seed producing parents, one parent had a 27.0% predicted gain in holocellulose 
yield and 21.5% predicted gain in recalcitrance factor (Table GS-1.2). 

Conclusions/Discussion
The original plan was to assess a large number of families from multiple breeding 
populations, but given the costs of chemical analysis, this was not feasible. The 
estimates of heritability and predicted genetic gains show that it would be quite 
feasible to genetically select Douglas-fir for conversion to jet fuel. Given the sample 
sizes, these estimates should not be taken as the last word in genetic parameter 
estimates: we would typically want to sample from 100 families and 30 trees per 
family on at least three sites to increase our confidence in the estimates. However 
these results show a lot of promise. 

From the CL98 test population, it would be possible to collect seed from a group of 
selected parents and start establishing high jet-fuel plantations in the near future. 
However for large-scale implementation into breeding programs in the Pacific 
Northwest, it would essential to either (1) identify indirect selection traits that are 
less expensive to measure or (2) find ways to simplify and accelerate the measure-
ment of the wood chemistry traits so that we could (3) screen many more popula-
tions and trees. 

Table GS-1.1. Narrow-sense individual heritabilities and their standard errors for five wood traits in a Doug-
las-fir breeding population

 

 

 

  h2i s.e. 
Density (SG) 0.315 0.219 
Pretreatment Yield (PY) 0.767 0.180 
Pretreated Holocellulose (PH) 0.185 0.190 
Hydrolysis Yield (HY) 0.496 0.142 
Recalcitrance Factor (RF) 0.443 0.136 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table GS-1.2. Genetic correlation coefficients (lower triangle) & their standard errors (upper triangle).

 

 

 

 

   SG PY PH HY RF 
SG  0.251 0.241 0.219 0.212 
PY 0.048  0.272 0.189 0.253 
PH 0.343 -0.021  0.259 0.273 
HY 0.325 -0.497 -0.246  0.015 
RF 0.402 -0.111 -0.159 0.972  
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Task Objective
Establish Pilot GS study, build a new high-capacity Douglas-fir SNP chip and geno-
type trees selected from CL98 population and trees in the pilot GS study

Methodology

Design and Building of Genotyping Array
The contract for building the array (50K SNPs) using the Affymetrix platform, and 
for genotyping 1,920 samples, was awarded to GeneSeek Inc. (based in Lincoln, 
Nebraska), part of NeoGen Corp (http://www.neogen.com/ Genomics/). Due to the $ 
amount of the contract and OSU contracting rules, we needed to go through a long 
and time-consuming process including a Request for Proposals.

SNP resources
The potential SNPs chosen for the Axiom array were derived from transcriptome 
sequencing projects described by Muller et al. (2012 and Howe et al. (2013). We add-
ed the Muller SNPs to increase the number of genes that could be assayed, thereby 
increasing genome coverage for genomic selection.  The Douglas-fir transcriptome 
(454 sequence data) and SNPs identified by Muller et al. (2012) were downloaded 
from http://www.treeversity.org by Stephanie Guida (National Center for Genome 
Resources). These data contained ~170,000 putative transcripts and ~188,000 SNPs.  
We used this information to identify ‘new genes’—that is, genes that were absent 
from our transcriptome assembly—and then added the corresponding SNPs to our 
SNP database. To identify these new genes, NCGR compared the Muller transcripts 
to the Howe transcriptome assembly using BLAST and an e-value cutoff of 1e-10. 
Excluding singletons, 63,286 transcripts had no BLAST hits, and were classified as 
new genes.  Muller et al. (2012) used three SNP detection programs (GSMapper, 
ssahaSNP, and bwa SAMtools) to identify 40,206 biallelic SNPs in the 63,286 unique 
transcripts described above. Of these 40,206 SNPs, 16,859 were detected by two or 
three SNP detection programs, and were the SNPs considered for inclusion on the 
genotyping array. These were added to our existing SNP database of 278,979 SNPs 
(Howe et al., 2013).  

Axiom array design
Two steps were used to filter the combined SNP database described above. First, 
we removed SNPs that were highly repeated in the Douglas-fir genome. This was 
done by comparing the SNP sequences to a draft of the Douglas-fir genome (v0.5) 
provided by Jill Wegrzyn (University of Connecticut). Second, we removed SNPs that 
had flanking sequences that did not meet minimum Affymetrix criteria for inclusion 
on the array (Table GS-2.1).  

After filtering, we submitted 111,648 SNPs in 21,659 genes to Affymetrix for the final 
array design: 108,299 SNPs in 19,336 genes came from the Howe SNP database, 
whereas 3,349 SNPs in 2,323 genes came from the Muller SNP database. 

Because 111,648 SNPs exceeds the capacity of a 50K SNP array, we prioritized these 
SNPs for the final design phase. We ranked the SNPs sent to Affymetrix using various 
measures of SNP quality, giving high ranks to target SNPs that were successfully 
genotyped using the Infinium array, most likely to be true SNPs, and least likely to 
have other SNPs in their flanking sequences Howe et al. (2013). Affymetrix used our 
rankings and their proprietary ‘p-convert’ values to choose the final set of 55,766 
SNPs representing 21,639 genes that were included on the array. The p-convert 
value reflects the probability that a SNP will be assayed reliable using the Axiom 
array system. The array also included a set of non-polymorphic ‘control’ probes that 
were used to judge array performance. Rich Cronn and Sanjuro Jogdeo developed 
these polymorphic sequences by identifying sequences that were identical between 

TASK 2: IDENTIFY USEFUL SNP GENETIC MARKERS  
IN DOUGLAS-FIR THAT CAN BE USED TO ASSOCIATE  

WITH USEFUL PHENOTYPIC VARIATIONS IN BIOFUEL  
PRODUCTION POTENTIAL AND OTHER COMMERCIALLY  

IMPORTANT TRAITS

Table GS-2.1. SNP quality for 221,674 SNPs first submitted to GeneSeek/Affymetrix.

 

 

 
15,384 recommended on both strands, 
38,392 recommended on the forward strand only 
39,388 recommended on the reverse strand only 
31,251 neutral in both strands 
26,947 neutral in forward strand only, (neutral best result) 
27,128 neutral in reverse strand only, (neutral best result) 
42,236 not-recommended in both strands 
426 not-possible in forward and not-recommended in reverse 
521 not-recommended in forward and not-possible in reverse 
0 not possible in both strands (This sequence does not have enough non-ambiguous flanking sequence.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.neogen.com/
http://www.treeversity.org
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our Douglas-fir transcriptome and the loblolly pine genome. During processing, the 
control probes were used to calculate a quality control metric (DQC) that was used 
to identify and remove poor quality samples.

Establishment of Pilot Genomic Selection Study
We developed a 3-generation pilot genomic selection population with elite genetic 
material from a cooperative Douglas-fir breeding program, obtained consent from 
the breeding program to use the required seed from 3rd-cycle crosses, obtained 
greenhouse space to sow the study in 2014, and agreement by a large industrial 
landowner to outplant the study in 2015. The trial (one of the first, genomic selec-
tion studies for coastal Douglas-fir) was sown at the end of March 2014 (1,420 one-
year old seedlings were sown from 25 full-sib crosses and one unimproved control) 
and 1,189 seedlings were planted out on Roseburg Resources property near Elkton, 
Oregon, on March 25, 2015. The test site was specially prepared and a grid put in for 
planting them. Individual trees are identified so that the seedlings from the full-sib 
crosses had DNA samples extracted from them as described above.

While phenotypic data from this study will be collected past the timeline of the 
NARA project, it will still be an important outcome for Douglas-fir improvement in 
the PNW. 

DNA Extraction
We collected 1920 needle samples from selected Douglas-fir trees at three progeny 
sites, four seed orchards, and one container nursery (Table GS-2.2). 

Each sample consisted of 5-10 green needles. Samples were placed in numbered 
14-cm3 vials and 10 cm3 of crystalline silicate desiccant was added immediately 
to preserve DNA, and the vials were sealed. All samples were carefully tracked by 
spreadsheet.

Subsamples of three needles were taken from each vial, manually minced to 
2-3mm lengths, and each sample was carefully loaded into a well in a 96-well DNA 
extraction plate (Qiagen DNeasy 96 Plant DNA kit). The location of each sample in 
each plate was carefully recorded. The loaded plates were transported to the USDA 
Forest Service National Forest Genetics Electrophoresis Laboratory (NFGEL) in Pla-
cerville, CA for extraction. The DNA extraction process followed the instructions in 
the Qiagen DNeasy kit. Extraction success was quantified using SYBR intercalating 
dye (Pico Green); any extraction producing less than 10ng DNA/µL was re-extracted. 
1920 samples were successfully extracted at the NFGEL facility, dried down and 
shipped to Geneseek Corp., Lincoln, NE for SNP analysis.  

Results
We measured 55,766 potential SNPs on 1,920 samples using the Axiom array. Of the 
1,920 DNA samples submitted to GeneSeek, 1,866 passed DQC standards and 1,694 
passed DQC, Plate QC and call rate QC rates (226 samples did not pass). Table GS-
2.3 shows the number of SNPs falling into six SNP quality categories: PolyHighRes-
olution, NoMinorHom, OTV, MonoHighRes, and CallRateBelowThreshold.  The call 
rate (CR) is an important measure of SNP quality. CR is the proportion of trees that 
can be assigned a reliable genotype (called) relative to the total number of trees 
genotyped. The average call rate for the passing samples was 99.01%.

 We worked with Affymetrix bioinformaticists to develop protocols to ‘rescue’ SNPs 
that previously did not pass the default Affymetrix quality control criteria (e.g., 97% 
call rate).  For instance, lowering the call rate threshold from 97% to 60% using 
the new custom R scripts increased the number of successful SNPs from 16,177 to 
24,192 in one population, and from 18,932 to 25,881 in another. We used a subset of 
427 unrelated trees to calculate SNP population genetic statistics. Over a range of 
call rate thresholds (60% to 97%), the median call rate for SNPs in Hardy-Weinberg 
equilibrium ranged from 99.1% to 100.0%, and the median minor allele frequency 
ranged from 0.196 to 0.236. Based on a small number of samples, the successful 
SNPs also work well on Interior Douglas-fir. The Axiom genotyping array will serve 
as an excellent foundation for studying the population genomics of Douglas-fir and 
for implementing genomic selection.

Table GS-2.2. Foliage samples were collected from the following sets of trees to be processed through the 
SNP genotyping array

 

 

 

 

No. of trees Description 

291      2nd-cycle CL98 progeny trees used in wood chemistry analysis or pilot genomic selection study 

28        CL98 parents with wood chemistry data 

46        other 1st generation parents or grandparents of 3rd cycle genomic selection crosses   

26        2nd cycle parents of 3rd cycle genomic selection crosses   

264     other 2nd cycle progeny, full-sibs of genomic selection study 2nd-cycle parents 

1,141   3rd cycle progeny (genomic selection study selection population) 

124     other parents of future 3rd cycle crosses 
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Conclusions/Discussion
SNPs classified as polymorphic and high-resolution (PolyHighResolution) are the 
ones that should work best for genomic selection. Using the default Affymetrix CR of 
97%, 16,177 SNPs fell into this category (Table GS-2.3). However, for genomic selec-
tion, a CR of 85% is probably more than sufficient (Rutkoski et al. 2013). Therefore, 
we are now investigating genomic selection using lower CR thresholds and, thus, 
greater numbers of SNPs.

Two other categories of SNPs (NoMinorHom and MonoHighResolution) probably 
contain many true SNPs that can be measured reliably. However, their minor alleles 
may be too low for making them particularly valuable or genomic selection, at 

least in the populations we tested. Nonetheless, if we count all three categories of 
‘converted’ SNPs (PolyHighResolution, NoMinorHom, and MonoHighResolution), 
we have about 30K SNPs that could contribute to the success of genomic selection. 
On the other hand, many of these may not be of sufficient quality, and we may need 
to exclude other SNPs in the PolyHighResolution category because of other issues, 
such as deviations from Hardy-Weinberg equilibrium. Balancing these consider-
ations, and based on ongoing analyses, we conclude that we have between 20K 
and 30K SNPs that will allow us to practice genomic selection in Douglas-fir. This 
is probably more SNPs than are needed to practice effective genomic selection in 
NWTIC-type breeding programs.

Table GS-2.3.  SNPs available to practice genomic selection in Douglas-fir.  This table shows the number of SNPs that were classified into six SNP quality groups (PolyHighResolution, 
NoMinorHom, OTV, MonoHighRes, and CallRateBelowThreshold) using an Affymetrix Axiom genotyping array.  For each SNP, the call rate (CR) is the proportion of trees that were as-
signed a genotype (called) relative to the total number of trees tested (n = 1,694).

 

 

 
No. of SNPs with 
call rate (CR) of:  

Classification 97%  Affymetrix abbreviation: description 

    
Polymorphic high resolution 16,177  PolyHighResolution: These are the very best SNPs because they vary among trees (are 

polymorphic) and can be measured very accurately (are high-resolution).  These SNPs 
pass all thresholds (CR.cut >= 97; FLD.cut >= 3.6; HetSO.cut >= -0.1; HomRO2.cut 
>= 0.3; HomRO3.cut >= 0.9; nMinorAllele.cut >= 2). 

No minor homozygote 4,786  NoMinorHom:  Minor alleles were found, but no minor homozygotes.  Many of these are 
probably true SNPs, but the MAF may be too low to be valuable for genomic selection. 

Monomorphic high 
resolution 

10,141  MonoHighResolution:  These SNPs are high-resolution, but they did not vary among 
trees (not polymorphic).  They may not be true SNPs or the minor allele frequency may 
be very low, and not valuable for genomic selection. 

Converted 31,104  This number (PolyHighResolution + NoMinorHom + MonoHighResolution) is a good 
indication of the success of the SNP genotyping platform itself. 

Off-target variant 1,170  OTV:  OTVs usually indicate that the DNA hybridized poorly to the genotyping array, 
perhaps because of other unknown SNPs near the target SNP.  It may be possible to 
measure these SNPs after using the OTV_Caller program to re-call the genotypes. 

Other 18,817  Other:  These SNPs did not pass various quality thresholds for various reasons. 

Call rate below threshold 4,675  CallRateBelowThreshold: The SNP was below the 97% or 80% CR threshold, but the SNP 
passed all other thresholds except that the number of minor alleles was ignored.  For 
genomic selection, a CR of 85% is probably more than sufficient (Rutkoski et al. 2013). 

Not converted 24,662  OTV + Other + CallRateBelowThreshold 

Total 55,766  Total number of SNPs attempted on the ‘50K’ genotyping array. 
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Task Objective
In this study, we applied Genomic Selection (GS) to coastal Douglas-fir to investigate 
the accuracy and selection efficiency for the phenotypes of growth rate, biofuel prod-
uct, wood chemistry properties, and branching characterless, by using SNP markers. 

Methodology
This study was carried out using two series of coastal Douglas-fir full-sib progeny 
trials (previously described i.e. SCC and CL98) as training / validation populations. 
The overall objective was to explore the potential of accelerating breeding cycles of 
Douglas-fir through genomic selection. In this process, 640 trees were genotyped 
using an Axiom 55K SNP array with Call Rate (CR) ≥ 80%. All monomorphic SNP 
markers were excluded, but SNPs with rare alleles were retained. As a result, a total 
of 22,126 polymorphic SNPs were used. 

The marker effects and, therefore, GEBVs were estimated using best linear unbiased 
prediction model (GBLUP). Our preliminary study indicated that the differences in 
PA between GBLUP and various Bayesian models (e.g., BL, BRR, BayesA, BayesB, 
and BayesC) were small for all the traits studied. 

To assess prediction accuracy (PA) of GS, we used 10 replications of 10-fold 
cross-validation where 90% of the total population was used as a training popula-
tion and 10% as the validation population. The PA was calculated as the mean Pear-
son correlation between the EBVs from pedigree-based models and the GEBVs from 
the GS models. The relative efficiency (RE) of GS to TS was estimated by comparing 
PAs from both schemes, assuming that the length of breeding cycle in GS is half of 
that in TS as a result of early selection.

For each of the 19 traits studied, we trained univariate genomic selection (UVGS) 
models with EBVs and validated GEBVs using the same (direct UVGS) or different 
(indirect UVGS) traits. In addition, we examined the consequences of including 
dominance variation in the UVGS models.

Since tree breeding programs normally deal with multiple trait selection, and some 
traits are difficult to evaluate, expensive, or they need a large sample size, we also 
evaluated and compared the accuracy of genomic predictions using multivariate 
genomic selection (MVGS) models. The following four scenarios were analyzed using 
MVGS models: (1) Training on TB, RF, SG, or VOL12; validated on TB, (2) Training on 
TB, RF, PY, or HY; validated on TB, (3) Training on HT12, HT7, DBH7, or VOL; validated 
on HT12, and (4) Training on HT12, HT7, DBH7, or VOL; validated on VOL12.

Results
The PAs from direct UVGS were relatively high for all the traits studied, ranging from 
0.57 to 0.79 (Table GS-3.1). For example, the PA was 0.65 for age-12 height (HT12) 
and 0.64 for total biofuel product (TB) (Figures GS-3.1 and GS-3.2). The correspond-
ing REs of GS to TS, assuming a conservative reduction of 50% in the length of the 
breeding cycle, were 1.79 and 1.92 respectively (Table GS-3.2, Figure GS-3.3), high-
lighting the increase in efficiency per unit time.

TASK 3: MAKE SELECTIONS FOR INCREASED BIOFUEL  
PRODUCTION USING A COMBINATION OF PHENOTYPIC  

AND SNP GENETIC MARKER DATA.

Table GS-3.1. Accuracy of genomic additive (A) and additive + dominance (AD) models for direct (i.e., same 
trait in training and validation) and indirect (i.e., different traits in training and validation) genomic predic-
tions. HT, DBH, VOL, FORK, RAMI, SINU, and NRY are total height, diameter at breast height, volume index, 
number of incidents of forks, number of incidents of ramicorns, stem sinuosity score, and estimated years 
of needle retention, respectively. The trailing numbers refer to measurement ages. Age-17 wood chemistry 
traits include HY (hydrolysis yield), PH (pretreated holocellulose fraction), PY (pretreatment yield), RF (recalci-
trance factor), and SG (specific gravity). TB is an index of total biofuel product calculated as VOL12 x SG x RF.

 

 

 

 

 

 

 

 

DBH12 DBH7 FORK12 FORK7 HT12 HT7 HY NRY7 PH PY RAMI12 RAMI7 RF SG SINU12 SINU7 TB VOL12 VOL7
DBH12 0.586 0.588 0.285 0.333 0.256 0.229 -0.198 0.177 0.024 0.244 0.427 0.383 -0.147 -0.339 0.284 0.244 0.188 0.534 0.529
DBH7 0.551 0.674 0.445 0.583 0.396 0.420 0.037 0.528 0.497 0.225 0.074 0.545 0.625
FORK12 0.220 0.384 0.766 0.611 0.327 0.321 -0.079 0.132 0.153 -0.006 0.500 0.456 -0.067 0.089 0.257 0.105 0.252 0.297 0.405
FORK7 0.264 0.492 0.615 0.765 0.363 0.323 -0.035 0.268 0.161 -0.091 0.529 0.499 -0.041 0.093 0.217 0.139 0.283 0.329 0.485
HT12 0.225 0.363 0.367 0.409 0.650 0.567 -0.079 0.107 0.041 0.124 0.191 0.236 -0.053 0.019 0.199 0.151 0.194 0.371 0.463
HT7 0.214 0.412 0.389 0.385 0.604 0.611 -0.035 0.006 0.039 0.102 0.201 0.271 0.001 0.014 0.199 0.131 0.222 0.355 0.499
HY -0.185 -0.128 -0.050 -0.087 -0.085 0.599 -0.205 -0.446 0.121 0.154 0.557 -0.066 -0.113 -0.113 0.125 -0.187
NRY7 0.212 0.069 0.181 0.376 0.114 0.012 0.790 0.069 0.156 0.055 0.015 0.178 0.073
PH 0.019 0.141 0.170 0.086 0.104 -0.199 0.689 0.024 0.060 0.079 -0.119 0.188 -0.021 -0.021 -0.062 0.073
PY 0.263 0.011 -0.090 0.150 0.144 -0.423 0.019 0.633 -0.262 -0.276 -0.317 -0.023 -0.051 -0.047 -0.106 0.253

RAMI12 0.336 0.438 0.489 0.515 0.169 0.171 0.080 0.058 0.060 -0.230 0.784 0.707 0.032 -0.079 0.213 0.118 0.265 0.326 0.390
RAMI7 0.309 0.428 0.461 0.503 0.215 0.232 0.124 0.128 0.080 -0.226 0.733 0.738 0.090 -0.096 0.223 0.130 0.253 0.315 0.403
RF -0.115 -0.110 -0.041 -0.029 -0.023 0.567 -0.114 -0.348 0.090 0.128 0.570 -0.067 -0.144 -0.142 0.120 -0.111
SG -0.345 0.102 0.121 0.086 0.064 -0.065 0.201 -0.013 -0.130 -0.146 -0.065 0.582 -0.126 -0.133 -0.141 -0.256

SINU12 0.246 0.259 0.273 0.229 0.187 0.186 -0.071 0.096 -0.008 -0.051 0.238 0.239 -0.095 -0.082 0.727 0.669 0.143 0.269 0.251
SINU7 0.206 0.117 0.116 0.148 0.141 0.123 -0.085 0.016 -0.010 -0.049 0.132 0.136 -0.112 -0.103 0.648 0.750 0.131 0.212 0.102
TB 0.219 0.250 0.298 0.176 0.175 0.103 -0.068 -0.106 0.318 0.295 0.097 -0.134 0.102 0.119 0.642 0.282

VOL12 0.545 0.580 0.393 0.420 0.425 0.378 -0.188 0.172 0.055 0.220 0.420 0.394 -0.139 -0.294 0.319 0.262 0.273 0.569 0.581
VOL7 0.518 0.639 0.488 0.588 0.523 0.521 0.057 0.477 0.476 0.221 0.065 0.568 0.644
DBH12 0.586 0.581 0.290 0.335 0.250 0.222 -0.188 0.202 0.025 0.230 0.431 0.388 -0.141 -0.343 0.290 0.250 0.183 0.533 0.524
DBH7 0.533 0.656 0.431 0.567 0.393 0.407 0.049 0.517 0.486 0.218 0.073 0.531 0.606
FORK12 0.228 0.383 0.785 0.621 0.324 0.315 -0.094 0.138 0.146 -0.014 0.516 0.477 -0.083 0.068 0.278 0.131 0.263 0.302 0.403
FORK7 0.267 0.493 0.621 0.769 0.366 0.322 -0.043 0.256 0.158 -0.075 0.529 0.499 -0.045 0.081 0.216 0.140 0.275 0.333 0.489
HT12 0.229 0.358 0.372 0.409 0.650 0.568 -0.072 0.084 0.037 0.110 0.194 0.237 -0.045 0.013 0.195 0.149 0.198 0.376 0.460
HT7 0.211 0.400 0.388 0.379 0.599 0.603 -0.060 0.008 0.037 0.106 0.200 0.271 -0.024 -0.008 0.204 0.138 0.213 0.350 0.482
HY -0.179 -0.137 -0.056 -0.085 -0.083 0.606 -0.212 -0.453 0.134 0.167 0.563 -0.074 -0.115 -0.116 0.108 -0.187
NRY7 0.209 0.057 0.196 0.393 0.108 -0.012 0.783 0.103 0.185 0.057 0.011 0.176 0.060
PH 0.013 0.126 0.160 0.088 0.110 -0.193 0.685 0.017 0.062 0.081 -0.111 0.189 -0.026 -0.026 -0.065 0.071
PY 0.261 0.012 -0.093 0.140 0.136 -0.426 0.019 0.636 -0.273 -0.284 -0.319 -0.019 -0.034 -0.030 -0.096 0.246

RAMI12 0.339 0.435 0.501 0.523 0.169 0.165 0.088 0.041 0.078 -0.236 0.796 0.722 0.044 -0.095 0.229 0.132 0.263 0.324 0.380
RAMI7 0.319 0.416 0.481 0.514 0.217 0.233 0.140 0.132 0.075 -0.247 0.753 0.759 0.101 -0.111 0.242 0.146 0.272 0.320 0.390
RF -0.123 -0.105 -0.034 -0.032 -0.024 0.580 -0.125 -0.344 0.074 0.116 0.585 -0.069 -0.161 -0.159 0.113 -0.119
SG -0.355 0.092 0.117 0.063 0.036 -0.053 0.205 -0.020 -0.124 -0.139 -0.053 0.590 -0.126 -0.132 -0.143 -0.275

SINU12 0.248 0.265 0.294 0.243 0.181 0.183 -0.082 0.083 0.009 -0.049 0.254 0.259 -0.107 -0.111 0.742 0.672 0.130 0.266 0.255
SINU7 0.206 0.103 0.126 0.153 0.128 0.113 -0.092 -0.005 0.007 -0.026 0.142 0.150 -0.117 -0.100 0.658 0.759 0.130 0.208 0.087
TB 0.228 0.250 0.296 0.178 0.177 0.100 -0.077 -0.102 0.312 0.289 0.093 -0.150 0.100 0.117 0.639 0.289

VOL12 0.543 0.580 0.392 0.423 0.423 0.377 -0.177 0.157 0.045 0.208 0.423 0.400 -0.132 -0.299 0.318 0.260 0.264 0.567 0.583
VOL7 0.506 0.628 0.481 0.584 0.508 0.511 0.060 0.476 0.477 0.217 0.062 0.555 0.638

Table	6.		Accuracy	of	genomic	additive	(A)	and	additive	+	dominance	(AD)	models	for	direct	(i.e.,	same	trait	in	training	and	validation)	and	indirect	(i.e.,	different	traits	in	training	and	validation)	genomic	predictions.	HT,	DBH,	
VOL,	FORK,	RAMI,	SINU,	and	NRY	are	total	height,	diameter	at	breast	height,	volume	index,	number	of	incidents	of	forks,	number	of	incidents	of	ramicorns,	stem	sinuosity	score,	and	estimated	years	of	needle	retention,	
respectively.	The	trailing	numbers	refer	to	measurement	ages.	Age-17	wood	chemistry	traits	include	HY	(hydrolysis	yield),	PH	(pretreated	holocellulose	fraction),	PY	(pretreatment	yield),	RF	(recalcitrance	factor),	and	SG	(specific	
gravity).	TB	is	an	index	of	total	biofuel	product	calculated	as	VOL12	x	SG	x	RF.

A

AD

Model
Training	
trait

Validation	trait



12DEVELOPING HIGH BIOFUEL COASTAL DOUGLAS-FIR FEEDSTOCKS BY GENETIC SELECTION  |  FINAL REPORT

 

 

 

 

 

Figure 1. Mean prediction accuracy (PA) for age-12 height (HT12) and total biofuel product (TB)

Target trait

Figure GS-3.1. Mean prediction accuracy (PA) for age-12 height (HT12) and total biofuel product (TB).

 

 

 

 

 
 
 
 
 
 

 

Figure 3.  Mean relative efficiency of genomic selection to traditional selection for age-12 height (HT12) and
total biofuel product (TB) 

Target trait

Figure GS-3.3. Mean relative efficiency of genomic selection to traditional selection for age-12 height (HT12) 
and total biofuel product (TB).
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Figure 2.  GEBVs vs. EBVs from a 10-fold cross-validation in the direct genomic selection for age-12 height (HT12) and total biofuel product (TB)
Figure GS-3.2. GEBVs vs. EBVs from a 10-fold cross-validation in the direct genomic selection for age-12 
height (HT12) and total biofuel product (TB).

Table GS-3.2. Relative efficiency of genomic selection (GS) to traditional selection (TS) based on genomic 
additive (A) and additive + dominance (AD) models for direct (i.e., same trait in training and validation) and 
indirect (i.e., different traits in training and validation) genomic predictions, assuming that the length of 
breeding cycle in GS is half of that in TS. HT, DBH, VOL, FORK, RAMI, SINU, and NRY are total height, diameter 
at breast height, volume index, number of incidents of forks, number of incidents of ramicorns, stem sinuos-
ity score, and estimated years of needle retention, respectively. The trailing numbers refer to measurement 
ages. Age-17 wood chemistry traits include HY (hydrolysis yield), PH (pretreated holocellulose fraction), PY 
(pretreatment yield), RF (recalcitrance factor), and SG (specific gravity). TB is an index of total biofuel product 
calculated as VOL12 x SG x RF.

 

 

 

 

DBH12 DBH7 FORK12 FORK7 HT12 HT7 HY NRY7 PH PY RAMI12 RAMI7 RF SG SINU12 SINU7 TB VOL12 VOL7
DBH12 1.738 1.681 1.017 1.322 0.705 0.632 -0.519 0.544 0.088 0.577 1.456 1.242 -0.438 -1.004 0.855 0.746 0.563 1.550 1.490
DBH7 1.611 1.927 1.564 2.279 1.082 1.148 0.114 1.762 1.581 0.665 0.222 1.565 1.761
FORK12 0.653 1.098 2.735 2.424 0.899 0.886 -0.209 0.403 0.569 -0.015 1.705 1.480 -0.201 0.264 0.773 0.321 0.756 0.863 1.140
FORK7 0.782 1.406 2.196 3.033 0.999 0.891 -0.093 0.821 0.602 -0.215 1.804 1.621 -0.123 0.277 0.653 0.424 0.848 0.955 1.367
HT12 0.667 1.036 1.312 1.623 1.788 1.568 -0.208 0.326 0.154 0.294 0.651 0.767 -0.159 0.056 0.598 0.461 0.581 1.078 1.303
HT7 0.634 1.177 1.387 1.527 1.662 1.688 -0.092 0.018 0.146 0.242 0.683 0.879 0.002 0.042 0.597 0.399 0.664 1.031 1.403
HY -0.551 -0.459 -0.194 -0.239 -0.236 1.568 -0.768 -1.057 0.416 0.506 1.660 -0.195 -0.339 -0.346 0.375 -0.545
NRY7 0.609 0.199 0.606 1.396 0.307 0.034 2.429 0.220 0.481 0.158 0.043 0.502 0.207
PH 0.056 0.507 0.681 0.234 0.286 -0.522 2.569 0.057 0.210 0.261 -0.355 0.555 -0.066 -0.067 -0.186 0.212
PY 0.785 0.042 -0.357 0.413 0.398 -1.109 0.071 1.498 -0.903 -0.905 -0.945 -0.068 -0.156 -0.145 -0.317 0.738

RAMI12 0.997 1.251 1.745 2.043 0.465 0.472 0.210 0.180 0.222 -0.543 2.671 2.294 0.096 -0.233 0.640 0.359 0.792 0.947 1.097
RAMI7 0.917 1.223 1.647 1.995 0.590 0.642 0.324 0.392 0.298 -0.537 2.498 2.396 0.269 -0.284 0.672 0.397 0.758 0.915 1.136
RF -0.342 -0.402 -0.168 -0.079 -0.062 1.485 -0.425 -0.824 0.313 0.421 1.696 -0.197 -0.436 -0.438 0.359 -0.321
SG -1.028 0.367 0.485 0.236 0.178 -0.172 0.750 -0.030 -0.446 -0.478 -0.193 1.726 -0.382 -0.410 -0.423 -0.745

SINU12 0.729 0.740 0.977 0.910 0.514 0.514 -0.187 0.296 -0.028 -0.121 0.813 0.775 -0.281 -0.243 2.186 2.044 0.428 0.781 0.706
SINU7 0.612 0.335 0.415 0.588 0.388 0.341 -0.224 0.048 -0.037 -0.114 0.450 0.443 -0.333 -0.304 1.948 2.292 0.392 0.617 0.289
TB 0.655 0.900 1.190 0.484 0.486 0.270 -0.254 -0.251 1.096 0.967 0.288 -0.397 0.308 0.367 1.922 0.823

VOL12 1.616 1.657 1.405 1.669 1.168 1.046 -0.493 0.531 0.204 0.522 1.430 1.279 -0.415 -0.872 0.957 0.799 0.818 1.652 1.638
VOL7 1.515 1.827 1.713 2.302 1.426 1.427 0.176 1.590 1.512 0.648 0.191 1.631 1.815
DBH12 1.738 1.659 1.036 1.330 0.688 0.615 -0.493 0.622 0.094 0.545 1.470 1.260 -0.419 -1.017 0.872 0.765 0.547 1.549 1.473
DBH7 1.559 1.877 1.515 2.217 1.074 1.114 0.150 1.724 1.543 0.642 0.216 1.525 1.707
FORK12 0.675 1.097 2.804 2.464 0.891 0.872 -0.245 0.424 0.544 -0.033 1.758 1.548 -0.249 0.202 0.836 0.403 0.787 0.877 1.135
FORK7 0.793 1.410 2.219 3.051 1.006 0.889 -0.114 0.788 0.590 -0.178 1.802 1.620 -0.136 0.241 0.650 0.427 0.822 0.967 1.376
HT12 0.678 1.024 1.328 1.619 1.789 1.570 -0.189 0.255 0.137 0.260 0.660 0.769 -0.133 0.039 0.584 0.454 0.593 1.091 1.295
HT7 0.624 1.142 1.384 1.504 1.648 1.666 -0.158 0.022 0.136 0.251 0.680 0.879 -0.071 -0.024 0.612 0.419 0.638 1.016 1.357
HY -0.532 -0.492 -0.222 -0.231 -0.229 1.587 -0.793 -1.074 0.460 0.547 1.675 -0.221 -0.348 -0.357 0.321 -0.542
NRY7 0.603 0.163 0.660 1.459 0.288 -0.032 2.407 0.336 0.572 0.166 0.031 0.498 0.170
PH 0.039 0.453 0.638 0.241 0.303 -0.506 2.557 0.042 0.218 0.270 -0.332 0.560 -0.077 -0.078 -0.194 0.206
PY 0.778 0.043 -0.372 0.385 0.378 -1.116 0.069 1.506 -0.941 -0.935 -0.949 -0.056 -0.104 -0.094 -0.288 0.717

RAMI12 1.005 1.244 1.789 2.076 0.465 0.456 0.231 0.130 0.288 -0.558 2.714 2.344 0.132 -0.281 0.689 0.402 0.787 0.942 1.070
RAMI7 0.947 1.189 1.718 2.040 0.596 0.644 0.368 0.406 0.281 -0.585 2.565 2.466 0.302 -0.327 0.729 0.448 0.815 0.930 1.098
RF -0.365 -0.378 -0.135 -0.086 -0.065 1.519 -0.465 -0.815 0.255 0.379 1.740 -0.203 -0.486 -0.486 0.338 -0.344
SG -1.059 0.327 0.464 0.169 0.096 -0.139 0.766 -0.047 -0.429 -0.458 -0.157 1.748 -0.383 -0.409 -0.427 -0.803

SINU12 0.736 0.759 1.051 0.963 0.498 0.505 -0.214 0.253 0.035 -0.116 0.866 0.841 -0.319 -0.328 2.233 2.056 0.388 0.774 0.717
SINU7 0.612 0.295 0.448 0.605 0.351 0.313 -0.240 -0.018 0.027 -0.062 0.482 0.485 -0.350 -0.297 1.978 2.321 0.387 0.602 0.245
TB 0.681 0.901 1.187 0.489 0.490 0.261 -0.288 -0.241 1.076 0.949 0.276 -0.444 0.303 0.360 1.912 0.843

VOL12 1.611 1.659 1.398 1.676 1.164 1.043 -0.464 0.485 0.170 0.493 1.442 1.298 -0.393 -0.885 0.956 0.793 0.789 1.646 1.642
VOL7 1.481 1.796 1.691 2.284 1.387 1.397 0.181 1.588 1.516 0.640 0.182 1.593 1.795

Table	7.		Relative	efficiency	of	genomic	selection	(GS)	to	traditional	selection	(TS)	based	on	genomic	additive	(A)	and	additive	+	dominance	(AD)	models	for	direct	(i.e.,	same	trait	in	training	and	validation)	and	indirect	(i.e.,	
different	traits	in	training	and	validation)	genomic	predictions,	assuming	that	the	length	of	breeding	cycle	in	GS	is	half	of	that	in	TS.	HT,	DBH,	VOL,	FORK,	RAMI,	SINU,	and	NRY	are	total	height,	diameter	at	breast	height,	volume	
index,	number	of	incidents	of	forks,	number	of	incidents	of	ramicorns,	stem	sinuosity	score,	and	estimated	years	of	needle	retention,	respectively.	The	trailing	numbers	refer	to	measurement	ages.	Age-17	wood	chemistry	traits	
include	HY	(hydrolysis	yield),	PH	(pretreated	holocellulose	fraction),	PY	(pretreatment	yield),	RF	(recalcitrance	factor),	and	SG	(specific	gravity).	TB	is	an	index	of	total	biofuel	product	calculated	as	VOL12	x	SG	x	RF.

A

AD

Model
Training	
trait

Validation	trait
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The indirect UVGS revealed interesting patterns. For height and volume growth at 
age 12, the models developed at age 7 and age 12 performed equally well in predict-
ing the growth at age 12 (Figure GS-3.4). For example, the PA was 0.6 for the model 
trained on HT7 and validated on HT12. This number was almost the same as the PA 
(=0.61) from the direct GS on HT12. For wood chemistry and biofuel traits, however, 
PAs from indirect GS were generally much lower than that from the direct GS.

Results indicated that the additive model (A) and the combined additive and dom-
inance model (AD) produced similar predictive abilities for all traits (Figure GS-3.5), 
despite the fact that dominance variation did contribute some genetic variance in 
some traits. This suggests that there is little merit of including genomic dominance 
effects in the GBLUP prediction models.

 

 

 

 

 

Figure 4.  Mean prediction accuracy (PA) for all traits when training on age-7 height (HT7), age-12 height 
(HT12), and age-12 volume (VOL12)

Target trait

Figure GS-3.4. Mean prediction accuracy (PA) for all traits when training on age-7 height (HT12), and age-12 
volume (VOL12).

 

 

 

 

Figure 5.  Mean prediction accuracy (PA) in direct GS: additive (A) vs. Additive + dominance (AD) modelsFigure GS-3.5. Mean prediction accuracy (PA) in direct GS: additive (A) vs. Additive + dominance (AD) models.
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MVGS provided higher PA and RE in each scenario (Figures GS-3.6 and GS-3.7); all 
were higher than their respective cross-validated UVGS results. It appears that MVGS 
exploits even weak trait correlations, and provided improved accuracy in a time and 
cost manner thus increasing genetic gain from selection among untested genotypes.

Conclusions/Discussion
In conclusion, this study showed encouraging results of applying genomic selec-
tion in coastal Douglas-fir. Remarkable gain can be achieved by incorporating 
genomic selection in breeding programs. The predictive abilities of SNP markers 
were around 0.60 for growth and biofuel product, and 0.75 for branching / stem 
straightness in univariate models. They are comparable to the accuracies estimated 
in the pedigree-based TS. For example 0.710 for HT12 (compared to 0.710 by pedi-
gree-based selection), and .62 vs. .69 for VOL12.

For growth traits, accuracies remained high when using models generating at age 7 
to predict phenotypes at age 12. For age-12 growth and branching traits, genomic 
selection models trained at age-7 had similar predictive abilities as models trained 
at age-12. Prediction using multivariate models were generally more accurate, but 
the increase of accuracy depends on the relationship among traits. 

Assuming that the length of breeding cycle in genomic selection is half of that in 
field-based selection, the relative efficiency of genomic selection to field-based ≈ 
200%. Prediction accuracies from some other studies in forestry species were as 
follows:  Loblolly pine (Resende Jr et al., 2012): 0.63 – 0.74 for HT6, 0.65 – 0.75 for 
DBH6;  Eucalyptus (Resende et al., 2012): 0.73 – 0.79 for HT3, 0.65 – 0.78 for SG4; 
Maritime pine (Isik et al. 2016): 0.47 for HT12, 0.43 for DBH12;  Loblolly pine (Re-
sende Jr et al. 2012): 0.39 for HT, 0.46 for DBH;  Interior spruce (Ratcliffe et al., 2015): 
0.37 – 0.47 for HT (ages 3 - 40).

We have tried to optimize prediction procedures in genomic selection in the follow-
ing ways:

•	 Compare different statistical approaches: GBLUP vs. Bayesian methods: 
GBLUP method performed equally well as Bayesian methods in general.

•	 Add non-additive component to the additive genomic selection model: 
Including non-additive component in the genomic selection model did 
not improve prediction accuracy for most traits. For FORK12, SINU12 and 
SINU7, Adding dominance effect into the genomic selection model boosted 
prediction accuracy by 13 – 31%. 

•	 Use multiple-trait models to make use of among-trait correlations: Multi-
ple-trait models are better than single-trait models even when the among-
trait correlations were weak. However, multiple-trait models show no 
benefit for predicting new individuals without any phenotypic information.

•	 Use a subset of SNP markers to reduce genotyping cost: It appears that simi-
lar predictive ability can be reached by using only a subset of SNP markers 
(~3K).

The results from this study should motivate implementation of genomic selection in 
Douglas-fir cooperative breeding programs. 

 

 

 

Target trait = TB

Target trait = TB

Target trait = HT12

Target trait = VOL12

Figure GS-3.6. Comparisons of mean prediction accuracy in univariate / multivariate analyses.
 

 

 

 

 

Target trait = TB

Target trait = TB

Target trait = HT12

Target trait = VOL12

Figure GS-3.7. Comparisons of mean relative efficiency of GS to TS in univariate / multivariate analyses.
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There are several outstanding issues for genomic selection in Douglas-fir:

• What is the optimal size / age / type of reference population? The efficiency 
of genomic selection largely depends on the design of the reference popu-
lation.

• Can different breeding zones or regions share the same genomic selection 
model? Our data are only relevant to a single breeding zone. A study in lob-
lolly pine also showed that prediction accuracy remained high across sites 
as long as they were used within the same breeding zones.

• How many generations does a genomic selection model need to be re-
trained? Results from dairy cattle breeding suggested that prediction 
accuracy eroded quickly with generations.

What is the cost-benefit analysis (genomic selection vs. TS)? 

The genotyping cost was $75 / tree, the DNA extraction probably added $5-10 
more per tree. In contrast, growing, planting, measuring a Douglas-fir progeny 
tree is about $10-20 / tree. However, relative benefits of genomic selection for 
Douglas-fir may be higher than other important conifer species (e.g., radiata pine, 
southern pines, and eucalypts). The testing cycle is longer for Douglas-fir, and 
testing costs much higher (fencing is needed ). The crucial breakthrough would be 
decreasing genotyping costs (e.g., fewer SNPs, larger volume, etc.).
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NARA OUTPUTS NARA OUTCOMES
Geleynse S., Alvarez-Vasco C., Garcia, K., Jayawickrama K., Trappe M. and Zhang X. 

2014. “A Multi-Level Analysis Approach to Measuring Variations in Biomass 
Recalcitrance of Douglas fir,” BioEnergy Research DOI: 10.1007/s12155-014-
9483-z.

Geleynse S., Jayawickrama K., Trappe M., Ye T., Zhang X. 2016. Genetic Parameters 
of Factors Affecting the Biomass Recalcitrance of Douglas fir Trees BioEner-
gy Research DOI: 10.1007/s12155-016-9718-z.

Geleynse, S., Alvarez-Vasco, C., Jayawickrama, K., Trappe, M, Garcia, K. and Zhang, 
X. 2013. Phenotypic variations of biomass recalcitrance in Douglas-fir fam-
ilies. Poster presented at 35th Symposium on Biotechnology for Fuels and 
Chemicals, April 29- May 2, 2013. Hilton Portland, Portland, Oregon. 

Geleynse, S., K. Jayawickrama, K. Garcia, M. Trappe and X. Zhang.  Improving Doug-
las-Fir Feedstocks by Screening Families for Biomass Recalcitrance.  Poster 
presentation at the NARA Annual Meeting, Corvallis, OR, September 10, 
2013. 

Jayawickrama, K.J.S., G. Howe, S. Guida and C.J. Bell. 2013. SNP chip development 
for Coastal Douglas-fir.  Poster presentation at the NARA Annual Meeting, 
Corvallis, OR, September 10, 2013.

Jayawickrama, KJS. 2013. Overview of Feedstock Development: NARA Years 1-3. 
Presentation at 2nd NARA Annual Meeting, September 12, 2013, Oregon 
State University, Corvallis, OR

The estimates of heritability and predicted genetic gain show that it would be quite 
feasible to genetically select Douglas-fir for conversion to jet fuel. Given the sample 
sizes, these estimates should not be taken as the last word in genetic parameter 
estimates: we would typically want to sample from 100 families and 30 trees per 
family on at least three sites to increase our confidence in the estimates. However 
these results show a lot of promise. 

From the CL98 test population, it would be possible to collect seed from a group of 
selected parents and start establishing high jet-fuel plantations in the near future. 
However for large-scale implementation into breeding programs in the Pacific 
Northwest it would essential to either (1) identify indirect selection traits that are 
less expensive to measure or (2) find ways to simplify and accelerate the measure-
ment of the wood chemistry traits so that we could (3) screen many more popula-
tions and trees. 

This study sets the stage for the application of high-density genotyping and genomic 
selection in coastal Douglas-fir in the Pacific Northwest. The results from this study 
was very promising, since a 50% increase in selection efficiency by  shifting to GS 
would substantially increase the rate of delivering genetic gain to Douglas-fir breed-
ing programs. There would need to be reductions in the cost of genotyping, however, 
since GS is not necessarily less expensive than progeny-test based breeding. 

FUTURE DEVELOPMENT 
In the future, we plan to optimize the prediction procedures in GS in terms of popula-
tion sampling strategy, cost-effective genotyping strategy, and consideration of G x E 
effect (e.g., GS at very early stage, across wide range of test sites, etc.). We will explore 
the possibility of replacing the individual-tree model used since 2003 with single-step 
model by combining genotypes, phenotypes, and pedigree. We also plan to conduct 
cost analysis for incorporating GS into Douglas-fir breeding programs.



17DEVELOPING HIGH BIOFUEL COASTAL DOUGLAS-FIR FEEDSTOCKS BY GENETIC SELECTION  |  FINAL REPORT

LIST OF REFERENCES 
Geleynse, S., Jayawickrama, K., Trappe, M., Ye,T. & Zhang, X. (2016) Genetic Pa-

rameters of Factors Affecting the Biomass Recalcitrance of Douglas-Fir 
Trees. BioEnerg. Res., 9(3), 731-739. doi: 10.1007/s12155-016-9718-2

Grattapaglia, D. & Resende, M.D.V. (2011). Genomic selection in forest tree breeding. 
Tree Genetics & Genomes, 7(2), 241-255.

Howe, G.T., Yu, J.B., Knaus, B., Cronn, R., Kolpak, S., Dolan, P., Lorenz, W.W. & Dean, 
J.F.D. (2013). A SNP resource for Douglas-fir: de novo transcriptome assem-
bly and SNP detection and validation. BMC Genomics, 14, 137.

Iwata, H., Hayashi, T., & Tsumura, Y. (2011). Prospects for genomic selection in coni-
fer breeding: a simulation study of Cryptomeria japonica. Tree Genetics & 
Genomes, 7(4), 747-758.

Isik, F., Bartholomé, J., Farjat, A., Chancerel, E., Raffin, A., Sanchez, L., Plomion, C. & 
Bouffier, L. (2016). Genomic selection in maritime pine. Plant Science, 242, 
108–119.

Luan, T., Woolliams, J.A., Lien, S., Kent, M., Svendsen, M. & Meuwissen, T.H.E. (2009). 
The Accuracy of Genomic Selection in Norwegian Red Cattle Assessed 
by Cross-Validation Genetics,183(3), 1119-1126.  doi: 10.1534/genet-
ics.109.107391.

Muller, T., Ensminger, I. & Schmid, K.J. (2012). A catalogue of putative unique tran-
scripts from Douglas-fir (Pseudotsuga menziesii) based on 454 transcrip-
tome sequencing of genetically diverse, drought stressed seedlings. BMC 
Genomics, 13.

Resende, M.D.V., Resende, M.F.R., Sansaloni, C.P., Petroli, C.D., Missiaggia, A.A., 
Aguiar, A.M., Abad, J.M., Takahashi, E.K., Rosado, A.M., Faria, D.A., Pappas, 
G.J., Kilian, A. & Grattapaglia, D. (2012a). Genomic selection for growth and 
wood quality in Eucalyptus: capturing the missing heritability and accel-
erating breeding for complex traits in forest trees. New Phytologist, 194(1), 
116-128.

Resende, M.F.R., Munoz, P., Acosta, J.J., Peter, G.F., Davis, J.M., Grattapaglia, D., 

Resende, M.D.V. & Kirst, M. (2012b). Accelerating the domestication of trees 
using genomic selection: accuracy of prediction models across ages and 
environments. New Phytologist, 193(3), 617-624.

Resende, M.D., Resende Jr, M.F., Sansaloni, C.P., Petroli, C.D., Missiaggia, A.A., Agu-
iar, A.M. et al. (2012c). Genomic selection for growth and wood quality in 
Eucalyptus: capturing the missing heritability and accelerating breeding for 
complex traits in forest trees. New Phytol, 194, 116–128. 

Resende Jr, M.F., Munoz, P., Acosta, J.J., Peter, G.F., Davis, J.M., Grattapaglia, D., Re-
sende, M.D. & Kirst, M. (2012). Accelerating the domestication of trees using 
genomic selection: accuracy of prediction models across ages and environ-
ments. New Phytol, 193, 617–624. 
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