Introduction
Pruning is a labor-intensive operation constituting 20% or more of annual pre-harvest production costs of crops such as apples. Automatic pruning has a potential to reduce labor use and costs and increase the long-term sustainability of the tree fruit industry. In this work, a machine vision system is proposed for pruning point identification in apple trees.

Objectives
- To design a sensing technique to develop a 3D model of an apple tree.
- To identify unwanted branches and locate pruning points.

Methods
- Data:
 - 3D and color images of apple trees in dormant season.
- Canopy Architecture:
 - A central leader-based fruiting wall.
 - Features:
 - Closely spaced central trunks.
 - No secondary branching.
 - Simpler pruning rules.

Methods
- Sensor:
 - 3D Camera from PMD Technologies, Siegen, Germany.

Features of 3D Camera:
- Provides 3D coordinates images.
- Additional information includes intensity, amplitude and flags corresponding to each 3D point.

Skeletonization
- Algorithm: Medial axis thinning algorithm
- Input: Point clouds in 3D space

Skeleton Analysis
- Trunk Identification Algorithm (TIA)
 - Input: Junction points in 3D skeleton.
 - Analysis: Connected maximum gradient points.
 - Output: Junction points defining a trunk.

- Branch Identification Algorithm (BIA)
 - Input: Junction points and trunk points.
 - Analysis: Depth first search at each trunk point to find the longest branching from the trunk point.
 - Output: Branch points for each branch.

Results
- Skeleton maintained the medial axis and connectivity of the 3D point cloud.
- TIA and BIA: Successfully detected all the trunk points.
- Successfully detected 18 out of 19 branches.
- Pruning point detection: Successfully detected all the pruning points based on the simplified pruning rules.

Summary and Future Work
- 3D machine vision system is promising for locating pruning points in apple trees.
- Further experiments are underway for calibration and statistical evaluation.

Acknowledgements
Authors would like to thank David Allan and Allan Bros. Inc., Prosser, WA for providing access to their orchards for collecting experimental data.