Slow Eye Closure as a Measure of Drowsiness and Its Relationship to Performance

Susan Raj1; Melinda L. Jackson1; Rodney J. Croft2; Gerard A. Kennedy3; Mark E. Howard4
1Sleep and Performance Research Center, Washington State University, Spokane, WA, USA;
2School of Psychology, University of Wollongong, Wollongong, Australia;
3School of Psychology, Victoria University, Victoria, Australia;
4Institute for Breathing & Sleep, Austin Health, Melbourne, Australia.

Introduction
• Driver drowsiness is a significant contributor to motor vehicle accidents world wide.
• Slow eyelid closure measured as PERCLOS (PERcent eye CLOSure) can be used to assess drowsiness in sleep deprived individuals.
• Automated measures of PERCLOS are not well validated.
• This study determined whether drowsiness can be detected using an automated measure of PERCLOS, and how this relates to performance after sleep deprivation.

Methods
Subjects
• Twelve healthy male professional drivers
• Age (mean ± standard deviation) = 45.6 ± 10.9
• Mean Epworth Sleepiness Scale score = 5.95
• Average number of driving hours per week = 42.4

Procedure
• Two randomized laboratory sessions; a) without sleep deprivation and b) after 24 hours of sleep deprivation.
• Performance was assessed using the AusEd driving simulator and the Psychomotor Vigilance Test (PVT).
• PERCLOS was assessed using the Copilot during the driving task.
• One participant did not complete the PVT.

Statistical analyses
• Repeated measures ANOVA was used to examine differences in PERCLOS and performance between sessions.
• Difference scores between sleep deprived and non-sleep deprived sessions were calculated.
• Regression analyses were performed and Pearson’s r correlations were assessed.

Results
• After sleep deprivation, drivers had significantly more PERCLOS (F1,11 = 5.60, p = 0.004), greater variability in lane position during simulated driving (F1,11 = 19.63, p = 0.001), and more PVT lapses (RT > 500 ms; F1,10 = 6.06, p = 0.034).
• PERCLOS was significantly related to variability in lane position (37% of variance explained, r = 0.61, F1,11 = 5.96, p = 0.035); see Figure 1. However, when the subject showing the greatest lane variability during sleep deprivation was removed, the correlation reduced to r = 0.18.
• PERCLOS was significantly related to PVT lapses (47% of variance explained, r = 0.68, F1,10 = 7.89, p = 0.020); see Figure 2.

Discussion
• After 24 hours of sleep deprivation, professional drivers had more eye closure, variation in lane position and PVT lapses compared with the non-sleep deprivation session.
• PERCLOS explained a significant portion of the variance of impairment in simulated driving and vigilance performance.
• Although a larger sample is needed to confirm these results, automated measures of PERCLOS appeared to be an effective means of detecting impairment due to drowsiness in a laboratory setting.

Research supported by Vic Roads