Professional Development Design and Outcomes

Janet Frost, Ph.D
Washington State University Spokane
frost@wsu.edu

Jacqueline Coomes, Ph.D
Eastern Washington University
jrcoomes@ewu.edu

Kristine Lindesblad, M.A.
Washington State University Spokane
lindesblad@wsu.edu

Project Description
This study discusses the outcomes of a secondary-postsecondary mathematics development project designed to improve students’ transitions from high school to college mathematics courses.

Theoretical Framework: Teacher Learning
- Wide range of teacher responses to PD (e.g., Seitz & Franke, 2003; Coomes & Franke, 2003; Smith & Stein, 2008; Chinn & Johnson, 2009).
- Complex influences: Three dynamic and reciprocally influential nested systems (Smith & Stein, 2008).
- Personal beliefs, histories, and identities
- School contexts
- Learning or PD activities

Research Questions:
- What are the key characteristics of a PD model that supports teacher learning and change across individual and contextual differences?
- How do secondary and postsecondary mathematics educators respond to this model?
- Do their responses suggest an interplay of personal, school, and PD systems that provides direction for further PD development?

PD Issue and Context
- Goal: use secondary and postsecondary PD to improve student success in transitioning from high school to college mathematics.
- Participants: 43 secondary and 10 postsecondary from 16 high schools, 7 school districts, 2 community colleges, and 2 universities.
- Professional Learning Community structure
- Key Characteristics: High Density of Ideas, Approaches, Types of Collaboration
- Exploration/application of standards, mathematics content, pedagogy
- Student work
- Reflection on practice
- Low Pressure
- Flexible, responsive planning; facilitators as co-learners
- Develop mutual respect, sense of safety in taking risks
- Individuals choose “little changes”

Data Collection and Analysis
- Qualitative case studies with purposeful selection of cases.
- Participant observers: PLC members, planners, facilitators, coaches.
- Data collected through interviews, observations, and artifacts.
- Analyzed for evidence of teacher change, trends in timing and direction of change, apparent prompts for change.

Year 1
Topics and activities:
- Teaching contexts
 - College Readiness Standards (CRS)
 - Content
 - Student attributes
 - CRS-aligned task development
- Rigor analysis (Smith, Stein, & Revell, 1999)
- Student transferability (Baumann, Rausch, & Suchting)
- Lesson design

Issues & Responses
- Team conflicts
- Participant attrition
- Unclear goals & expectations
 - More specific goals, plans, expectations
 - Little observed change

First changes and prompts (Year 1):
- Prompts: Facilitator, with conversations, ideal student attributes
- Student reflections
- Changing teacher & student roles
- Encouraged students to help each other
- Reduced answering, increased questioning
- Increased student problem solving

Background:
- Traditional HS teacher
- Wife math teacher
- Goal to constantly improve teaching skill
- Recent move to new school
- Little PD support, little faculty collaboration
- Off task, distracted during pedagogy PD

Brian Timeline
- Goal: use secondary and postsecondary PD to improve student success in transitioning from high school to college mathematics.
- Participants: 43 secondary and 10 postsecondary from 16 high schools, 7 school districts, 2 community colleges, and 2 universities.
- Professional Learning Community structure
- Key Characteristics: High Density of Ideas, Approaches, Types of Collaboration
- Exploration/application of standards, mathematics content, pedagogy
- Student work
- Reflection on practice
- Low Pressure
- Flexible, responsive planning; facilitators as co-learners
- Develop mutual respect, sense of safety in taking risks
- Individuals choose “little changes”

Data Collection and Analysis
- Qualitative case studies with purposeful selection of cases.
- Participant observers: PLC members, planners, facilitators, coaches.
- Data collected through interviews, observations, and artifacts.
- Analyzed for evidence of teacher change, trends in timing and direction of change, apparent prompts for change.

Year 2
Topics and Activities:
- Year 1 activities plus
 - Classroom case studies (Stein, 2011)
 - Questioning cognitive demand levels (Zambo & Zambo, 2008)
 - Ramp tasks: multiple entry points and extensions; student work on ramp problems
 - Formative assessment
 - Little changes
 - One classroom observation

Issues & Responses
- Team conflicts
- Participant attrition
- Unclear goals & expectations
 - More specific goals, plans, expectations
 - Little observed change

First changes and prompts (Year 2):
- Prompts: New teammates and shared planning period,
 - Watches video of teaching, sees students
 - Likes new level of energy, engagement in class
- Student reflections
- Changing teacher & student roles
- Encouraged students to help each other
- Reduced answering, increased questioning
- Increased student problem solving

Background:
- Traditional HS teacher
- Wife math teacher
- Goal to constantly improve teaching skill
- Recent move to new school
- Little PD support, little faculty collaboration
- Off task, distracted during pedagogy PD

Mike Timeline
- Goal: use secondary and postsecondary PD to improve student success in transitioning from high school to college mathematics.
- Participants: 43 secondary and 10 postsecondary from 16 high schools, 7 school districts, 2 community colleges, and 2 universities.
- Professional Learning Community structure
- Key Characteristics: High Density of Ideas, Approaches, Types of Collaboration
- Exploration/application of standards, mathematics content, pedagogy
- Student work
- Reflection on practice
- Low Pressure
- Flexible, responsive planning; facilitators as co-learners
- Develop mutual respect, sense of safety in taking risks
- Individuals choose “little changes”

Data Collection and Analysis
- Qualitative case studies with purposeful selection of cases.
- Participant observers: PLC members, planners, facilitators, coaches.
- Data collected through interviews, observations, and artifacts.
- Analyzed for evidence of teacher change, trends in timing and direction of change, apparent prompts for change.

Year 3
Topics and Activities:
- Year 1 & 2 activities plus
 - Content-focused Summer Institute (Algebra & Functions)
 - Administrator Summer Institute
 - Norms for collaboration, problem solving
 - Three in-school observations & meetings
 - Curricular balance of problem solving, concepts, and procedures
 - Common Core State Standards—Mathematics
 - Unit design

Issues & Responses
- Administrators unaware, uninvolved
- Administrator PD
- College faculty member intimidating
- 1-1 meeting

First changes (Year 3):
- Active participant in PD
- Value of collaboration in both content and pedagogy
- Increased use of student ideas & strategies in lessons
- Value of student independence

Background:
- Traditional HS teacher
- Wife math teacher
- Goal to constantly improve teaching skill
- Recent move to new school
- Traditional HS teacher
- Same text as Brian, advanced credential work
- Disagreed with direction of change
- First year PD partner dismissive of project
- Little observed change

Final Outcomes
- Students take more active roles, less reliance on Brian
- More consistent student problem solving approach
- Interest in ongoing changes to improve student outcomes

Departmental leadership

Year 4
Topics and Activities:
- Year 3 activities plus
 - Content-focused Summer Institute (Geometry)
 - Rich task and rubric development
 - Student engagement and strategies
 - Teacher leadership
 - Student work on Math Placement Test questions (MPT-G)
 - Lesson studies

Issues & Responses
- Administrators unaware, uninvolved
- Administrator PD
- College faculty member intimidating
- 1-1 meeting

First changes (Year 4):
- Active participant in PD
- Value of collaboration in both content and pedagogy
- Lesson study experience
- Increased use of student ideas & strategies in lessons
- Value of student independence

Final Outcomes
- Increased student ideas
- Increased cognitive demand
- Initiation of lesson study with colleagues
- Increased use in standards-based grading
- Increased engagement with secondary teammates

Conclusion: Value of high density, low pressure, little changes approach in supporting individual choice and change

This project was funded by grants authorized by the No Child Left Behind Act and administered by the U.S. Department of Education and Washington State Higher Education Coordinating Board, with additional funding from the Washington Transition Mathematics Project and the MC3 project.