Cryocompressed Hydrogen Storage & Liquid Delivery

Jacob Leachman, Ph.D.
Assistant Professor
DOE H₂ Transmission & Delivery Workshop
2/26/2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Why Cryogenic Hydrogen?

• LH$_2$ tanker trucks delivered 80-90% of total small merchant H$_2$ in 2010.1

• Cryo-H$_2$ densities are superior.2
 - LH$_2$ at NBP is 70.8 g/L
 - Cryocompressed at 440 bar and 30 K is 90 g/L
 - Gaseous at 700 bar and 295 K is 39.7 g/L

• Cryo-H$_2$ fill rates are substantially faster than gas.
 - No on-board cooling required

• Big downside: 30% of usable energy lost to liquefaction.1
 - Liquefaction energy can be recouped via autogenous pressurization
 - Many cryo-challenges remain

2 REFPROP v. 9.1 NIST (2013)
Para, Normal, & Ortho Hydrogen

![Graph showing the isobaric heat capacity (C_p) and equilibrium mole fraction of ortho (y_{ortho}) versus temperature [K].](image)
Cryo Storage Challenges

• Cryocompression pump demonstration to 875 bar underway.¹
 • Linde & BMW partnering with LLNL

• Reducing Type 3-5 tank volume and cost.²
 • Novel ideas needed to improve carbon fiber synthesis, insulation, cold thermal mass, & liners

² Ahluwalia, Hua, & Peng, DOE H2 Distribution & Transmission Workshop (2011)
Cryo Delivery Challenges

- **Cryo H₂ Flow Metering**
 - Bulk weighing is typical for mass gauging but not a long term solution
 - Accurate + low cost flow meters needed!
 - Ortho-para mixtures, very low viscosity and density confound traditional meters
 - Short property standards for cryo custody exchange needed (current > 200 K)

- **Cryo H₂ Component Safety**
 - Lower cost and accelerated testing in LH₂ needed
 - Thermal and mechanical fatigue testing
 - High pressure and impact testing
 - Failure Modes & Effects Analysis (FMEA)

- **Streamline Technology Readiness Level (TRL) advancement to reduce cost**

1 REFPROP v. 9.1 NIST (2013)
Current Research: Advancing H₂ TRL @ lower cost

• Solid H₂ Twin-Screw Extruder performance for US ITER ~ $67k
• Para-ortho conversion enhanced vapor cooled shielding ~ $66k
• 1st dual-sinker magnetic levitation balance for cryogenic density & sorption ~ $100 k
• Genii UAV – 1st LH₂ drone built by students ~ $30 k

Thank you!