WEED CONTROL TRAINING: SUPPLEMENT FOR LIMITED PRIVATE APPLICATORS AND RANCHER PRIVATE APPLICATIONS
Table of Contents

Introduction ... 3
Basic Weed Science 4
 Origin of Weeds .. 4
 How Weeds Spread 4
 Weed Establishment and Persistence 4
 Weed Classification and Life Cycles 5
Weed Management Strategies 8
 Prevention ... 8
 Mechanical Control 8
 Cultural Control 9
 Biological Control 9
 Chemical Control 10
Herbicide Activity and Selectivity 11
 Uptake and Movement—Contact versus Translocated 11
 Modes of Herbicide Action 12
 Selective versus Nonselective Activity 13
 Herbicide Tolerance and Resistance 15
 Herbicide Groups 16
Calibration ... 18
 Mixing and Calculations 22
Laws Affecting Weed Management 26
 Washington State Noxious Weed Law—WAC 17.10 26
 Washington State Seed Law—RCW 15.49 26
 Washington State Quarantine Law—RCW 17.24 26
 Registration Restrictions for Groundwater Protection—WAC 16-228-1231 26
 Registration Restrictions for Herbicides in Aquatic Sites—WAC 16-228-1231 27
 Herbicide Sale and Use Regulations—WAC 16-228-1231 and 1250; and 16-230-600 through 675 27
 Other Weed Management Rules 27

WEED CONTROL TRAINING: SUPPLEMENT FOR LIMITED PRIVATE APPLICATORS AND RANCHER PRIVATE APPLICATORS

By
Robert Parker, Ph.D., WSU Extension Weed Scientist, WSU Prosser Irrigated Agriculture Research and Extension Center, Carol A. Black, M.S., WSU Extension Project Associate, Washington State University

Abstract

This is a supplement to the training materials for the Limited Private Applicator and Rancher Private Applicator pesticide licenses. Both the limited and rancher licenses target weed control as the major focus of pest control. The WSDA pesticide exams for each of these categories include questions that are not currently found in the Private Applicator Pesticide Education Manual (EM020). This supplement contains extracted text from the Agricultural Weed Management Manual (EM043) and covers in more detail basic weed biology and management concerns. Between this supplement and the Private Applicator Pesticide Education Manual, all of the material contained in the exams is covered.

This publication replaces MISC0547E.
A “weed” is an undesirable plant. Any kind of plant may be considered a weed if it becomes a hazard, nuisance, or causes injury to us, our animals, or our cultivated crops. In agriculture, weeds are a major problem. They compete with crops for light, water, and nutrients. Competition often decreases crop yield. Some release chemicals harmful to other plants. Harvesting weedy fields also is more difficult and costly. Buyers may dock the price of the harvested crop that is contaminated with weed seeds or weed parts because of lower quality. In forage crops, weeds may alter crop palatability or taint the taste of milk. Some weeds are poisonous to humans or livestock; others cause skin irritations and infections.

A plant may be considered a weed in one instance and beneficial in another. For example, quackgrass may compete with crops, yet it stabilizes steep slopes to prevent erosion. Barley becomes a weed when it “volunteers” in wheat. Some weeds provide food and shelter to animals and beneficial insects.

The benefits from weed management are noticeable both in the field and at the bank. Crops grown with an eye toward good weed management are more tolerant of other pests, produce higher yields, and lend themselves to more efficient harvests. We benefit economically from higher yields and net profit when using a cost-effective control program.

Historically, people spent a great deal of time and effort pulling, hoeing, mowing, chopping, and otherwise destroying weeds. The introduction of chemical herbicides greatly increased our ability to manage weeds economically and efficiently. However, the use of herbicides requires the knowledge and skills to handle and apply these materials properly and safely.

An integrated management approach to weed control obtains the greatest economic benefit while protecting the environment and observing regulations. To design a management plan against a particular weed, first identify the weed and learn something about its biology. Understanding the weed’s biology and its ecology will help you decide whether control is necessary. If it is, evaluate the suitability and potential effectiveness of various control tactics and determine the costs of these measures. Evaluate the impact of the desired control measures on the environment.

Using certain herbicides may not be wise on a particular site because of environmental concerns. Similarly, some mechanical practices may cause unacceptable damage to certain sites. After considering all of these factors, design and implement the management plan.

The best management plans use an integrated approach, drawing on more than one method for weed control. Integrated weed management (IWM) uses several control methods together to control weeds economically and efficiently.

If you select chemical control as a portion of your IWM strategy, follow the herbicide label instructions. Herbicides are efficient weed management tools; however, improper use or abuse of these chemicals can harm people and the environment. Improper use can jeopardize the continued availability of some herbicides. You must understand the complexities associated with chemical weed control and use herbicides safely and effectively.
Origin of Weeds

Weeds are classified as native or introduced according to their origin. Plant origin may help determine weed management strategies and the difficulty of control.

Native weeds have historic origins in the area and were not brought here by human activity. Natural enemies, competition from other plants, and environmental conditions hold many native weed populations in check. Sometimes these plants may be troublesome, but native plants rarely become problem weeds.

Introduced plants came from other parts of the country or world through human activities, animal movements, and water flow. For example, most of our problem weeds are plants that were inadvertently introduced through crop seed, hay, straw, and ship ballast water. Some of our problem weeds were intentionally introduced by humans as crops, forage, or ornamentals. They have subsequently spread beyond their intended areas. Dalmatian toadflax, Scotch broom, and kochia are examples of escaped ornamental plants. The Pacific Northwest often lacks the weeds’ natural enemies or limiting factors, such as climate, to hold introduced plants in check. This lack of natural control allows adaptable weeds to flourish and spread.

How Weeds Spread

Weeds spread when seeds or growing plant parts (roots, stems, rhizomes) are moved or carried into new territory. Some invading weed species have evolved special seed shapes or structures to aid their movement by wind, water, or animals. Also, many plants have vegetative parts that resprout new roots or shoots. If these plant fragments are carried into new areas, they may grow and start new infestations.

Wind carries many seeds to new areas. Weeds such as dandelions have a parachutelike attachment that carries the seed in the wind. For other weeds, such as tumble mustard and Russian thistle, the entire plant moves or tumbles with the wind, dropping seeds as it rolls.

Water from rain or irrigation and the subsequent surface runoff transports many seeds. Some seeds have an oily coating or an air bladder to aid flotation. Rivers, streams, and irrigation canals move large numbers of seeds.

Mammals, birds, and humans carry seeds on their bodies, dropping them into new areas. Plants have seed shapes (burs, hooks, barbs) that cling to feathers, hair, and clothing. Some seeds are ingested and excreted by wild or domestic animals. The seeds often survive and subsequently germinate after they have passed through an animal’s digestive tract.

Weed Seed Dissemination

People unintentionally move and introduce weeds over long distances. Equipment (combines, trucks, cultivators, recreational equipment, automobiles) and livestock feed carry seeds to new sites. Planting crop seed contaminated with weed seeds is a major agricultural problem.

Weed Establishment and Persistence

Weeds rapidly become problems when introduced into most agricultural settings if the environment is suitable. Standard tillage and grazing practices disturb the soil or ground cover and leave an opening for weeds to germinate and compete with crop or range plants. Once established, weeds are prolific seed producers, ensuring their survival.

Number of seeds produced per plant

<table>
<thead>
<tr>
<th>Weed</th>
<th>Seeds per Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common mullein</td>
<td>223,200</td>
</tr>
<tr>
<td>Redroot pigweed</td>
<td>117,400</td>
</tr>
<tr>
<td>Shepherdspurse</td>
<td>38,500</td>
</tr>
<tr>
<td>Kochia</td>
<td>14,600</td>
</tr>
<tr>
<td>Wild sunflower</td>
<td>7,200</td>
</tr>
<tr>
<td>Canada thistle</td>
<td>680</td>
</tr>
<tr>
<td>Wild oat</td>
<td>250</td>
</tr>
</tbody>
</table>

Weed seeds, depending on the species, can lie dormant in the soil from a period of a few months to many decades. This long seed viability helps guarantee weed survival. Because weeds can produce high numbers of seed and many weed seeds can survive in the soil for years, weed management is usually a long-term process.

Weed Classification and Life Cycles

Accurately identifying weeds is the first important step in an effective weed management program. You may easily recognize some of the more common weeds; however, identifying some new weed species is a difficult task requiring a working knowledge of plant anatomy and classification.

People and resources available to help you identify plants or weeds exist through the university and county extension systems, county noxious weed programs, and field personnel. Resources include taxonomic keys, picture guides, pamphlets, and weed identification computer software.

Major plant groups are designated according to the structural characteristics common to all the plants in each group. For instance, we generally divide weeds into two major groups: grasses and broadleaves.

Grasses have only one seed leaf. Leaves are narrow and upright. Leaf veins run parallel to leaf margins. Most grasses have fine and branching (fibrous) roots. **Sedges** differ from grasses by having triangular-shaped stems rather than round or oval ones. Sedge leaves extend in three directions.

Broadleaf plants, shrubs, and trees have two seed leaves. Leaves are generally broad with netlike veins. The root system is coarse, often having a strong taproot. Plants may be herbaceous, which means they have no woody tissue and dieback to the ground, or they may be woody (brush, shrubs, and trees). Brush and shrubs have several stems and rarely grow taller than 10 feet. Trees usually have a single stem (trunk) and generally grow taller than 10 feet.

Another type of weed classification is based on the plant **life cycle**. The effectiveness of a weed management plan often depends on knowing the weed’s life cycle. Some control methods are more effective during certain stages. Successful management depends on timing control measures to coincide with the weed’s specific, vulnerable stages. Plants are classified by their life cycle as annuals, biennials, or perennials.

Annual plants complete their life cycle in less than one calendar year. Normally annuals are the easiest weed type to control, although they are the most common weed type in cultivated fields. Annuals are a continual problem because of an abundance of dormant seed, fast growth, and high seed production. They may actually cost more to control than perennial weeds due to high numbers of different species. There are two types of annual plants: summer annuals and winter annuals.

<table>
<thead>
<tr>
<th>List of common summer and winter annuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer annuals</td>
</tr>
<tr>
<td>Barnyardgrass</td>
</tr>
<tr>
<td>Green & yellow foxtails</td>
</tr>
<tr>
<td>Common lambsquarters</td>
</tr>
<tr>
<td>Common ragweed</td>
</tr>
<tr>
<td>Knotweeds</td>
</tr>
<tr>
<td>Pigweeds</td>
</tr>
<tr>
<td>Puncturevines</td>
</tr>
<tr>
<td>Common purslane</td>
</tr>
<tr>
<td>Russian thistle</td>
</tr>
<tr>
<td>Wild oat</td>
</tr>
</tbody>
</table>

Two major plant groups

Grass (Monocotyledon)

Broadleaf (Dicotyledon)
Summer annual plants germinate (sprout from seed) in the spring or summer. They grow, flower, set seed, and die before winter. The seeds lie dormant in the soil until the next spring or several springs later, when the cycle repeats itself.

Winter annual plants germinate from late summer to early winter. They overwinter in a vegetative stage. In the spring or early summer, they flower, set seed, mature, and die, but live for less than one full year. The seeds lie dormant in the soil during the summer months. Winter annuals are most troublesome in fall-seeded crops, such as winter wheat, and in perennial crops, such as alfalfa and mint, which go through winter dormancy.

Biennial plants complete their life cycle within 2 years. In the first year, the plant forms basal leaves (rosette) and a tap root. The second year the plant flowers, matures, and dies. There are no biennial grasses or sedges.

Sometimes people confuse biennials with winter annuals. Winter annuals normally live during two calendar years and during two seasons, but they complete their life cycle in less than 12 months.

Perennials live more than 2 years, and some may live almost indefinitely, resprouting from vegetative plant parts. Because of these persistent, resprouting roots, rhizomes, stolons, tubers, plant fragments, etc., perennials are difficult to control. To avoid these problem weeds, do not let perennial seedlings become established. Most reproduce by seed and many spread vegetatively as well. Perennials are classified according to how they spread: simple or creeping.

Simple perennial plants resprout from crown buds on the tap root and spread by seed. The roots are usually fleshy and may grow very large. Dandelion is a common example; if you cut it off below ground level, the plant can resprout from the taproot.

Creeping perennials reproduce by creeping roots, creeping aboveground stems (stolons), or creeping belowground stems (rhizomes). In addition, they can reproduce by seed. Canada thistle and field bindweed sprout new shoots from creeping roots. Bentgrass and bermudagrass sprout new plants from aboveground runners or stolons. Quackgrass and Johnsongrass sprout new growth from rhizomes, the underground stems. Yellow nutsedge also produces rhizomes, but the rhizomes end with underground tubers that sprout new plants.
Once a field is infested, creeping perennials are probably the most difficult group to control. Control might require repeated cultivation or mowing, herbicide application(s) (possibly a residual herbicide), or combinations of the above.

<table>
<thead>
<tr>
<th>Simple</th>
<th>Creeping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common dandelion</td>
<td>Leafy spurge</td>
</tr>
<tr>
<td>Curly dock</td>
<td>Field bindweed</td>
</tr>
<tr>
<td>Buckhorn plantain</td>
<td>Canada thistle</td>
</tr>
<tr>
<td>Broadleaf plantain</td>
<td>Mouseear chickweed</td>
</tr>
<tr>
<td>Pokeweed</td>
<td>Ground ivy</td>
</tr>
<tr>
<td></td>
<td>Bermudagrass</td>
</tr>
<tr>
<td></td>
<td>Johnsongrass</td>
</tr>
<tr>
<td></td>
<td>Quackgrass</td>
</tr>
<tr>
<td></td>
<td>Yellow nutsedge</td>
</tr>
</tbody>
</table>
Weed Management Strategies

Weed management demands careful attention to the cropping system and the surrounding environment. The first step in a management plan is to be vigilant and aware of potential problem weeds. Weeds will infest any ground disturbed by cultivation, grazing, or erosion. Establish a list of potential invaders and watch for the introduction of noxious weeds (state-regulated weeds, see section “Laws Affecting Weed Management”). Review the biology of the weeds already present and identified. Once you establish a working knowledge of weeds, you can evaluate potential management strategies.

Understanding the environment where weeds compete or grow is important. Certain weeds invade or grow in rangeland, while others appear on cropland. Particular cropping systems provide favorable environments for specific types of weeds. For example, more intensively tilled row crops discourage the growth of perennial weeds while encouraging the growth of annuals. Established perennial crops, such as alfalfa, strongly outcompete summer annual weeds, but perennial weeds may increase due to a lack of tillage. Where similar crops are grown repeatedly, weeds favored by the cropping system (tillage, herbicide, harvest) will increase.

A total weed management approach is necessary to control weed populations in agricultural land or rangeland. First, prevent weeds from invading. If weeds become established, use mechanical, cultural, biological, or chemical control methods. Often these methods are used together. One approach may be very effective on small infestations, but less practical on larger ones. Tailor the management plan to each particular situation. All management programs require many years of effort.

Prevention

The best way to manage weeds is by keeping them out of fields or rangelands. If they are not present, they do not require control. Stop new weeds from infesting an area.

- Make sure that weed seeds are not carried onto the area with contaminated crop seed, water, feed, manure, or on machinery.
- Prevent new weeds from going to seed by controlling them prior to seed set.
- Control weeds along fencelines and roadways.
- Prevent the spread of perennial weeds by not dragging or moving vegetative parts with machinery.

The most common introduction of weeds into croplands is by planting crop seed contaminated with weed seed. Plant certified crop seed (seed certified free of noxious weed seeds) to reduce this.

Know which weeds may potentially invade new areas. Keep a close watch for them.

Mechanical Control

Mechanical methods are the oldest methods of weed control. These include cultivation and other tillage operations, hand-pulling, hoeing, blading, grubbing, mowing, burning, flooding, and mulching.

Tillage works by disturbing the root system. The objective is to dislodge or cut the root system so the plant dies from drying out before it can reestablish its roots. Tillage easily controls small weeds and is most effective in hot, dry weather with dry soils. To effectively control perennial weeds, repeat tillage each time new shoots emerge (about every 2 weeks) for one or two seasons. Make sure you cut off every plant.

Tillage also can kill weeds by burying them. For example, a row crop cultivator can throw soil over small weeds growing in the crop row. This is effective on most small annual weeds. Most annual weeds die when all growing points are buried. Burial is not effective on established perennial weeds since their underground parts will resprout.

Mowing reduces annual weed growth, but will not prevent seed production because most weeds flower again but closer to the ground. Mowing usually favors perennial weeds at the expense of annual weeds.

Flooding works by denying oxygen to leaves and roots. Surround the weed-infested areas with dikes, then flood with 6 to 10 inches of water for 3 to 8 weeks in summer. This method is more effective in sandy soils than in heavy soils. Flooding has little effect on weed seeds in the soil.

Fire removes undesirable plants from ditch banks, roadsides, and other waste areas and removes unwanted underbrush and broadleaved species in conifer forests. It provides annual weed control in some row crops. Burning also removes fire hazards, clears waterways, kills insect and fungus pests, lessens the amount of trash to be plowed or disced, and removes unsightly debris. Green plants may require two burnings, one to dry out and a second to burn the dried weed. Fire will not kill weed seeds buried in the soil, but can destroy seeds on plants and in surface litter under favorable conditions.
If you want to use burning in your management plan, check with the Washington Department of Ecology. Burning may require a permit.

Mulching with bark chips, plastic, and other materials can control weeds. Emerging seedlings die because they never receive sunlight. The covering must keep out all light to kill the weeds.

Cultural Control

Cultural weed control methods use practices common to good land and water management to help the crop compete against weeds.

Crop competition is fundamental to a weed control program. Crops and crop varieties differ in how efficiently they compete for sunlight, water, and nutrients. If possible, select crops or crop varieties that have beneficial growth habits, such as rapid establishment and canopy closure or rapid regrowth after harvest (for example, alfalfa). Early competition is usually more detrimental to a crop than later competition when the crop is well-established. To reduce weed impact, establish a good, uniform crop stand quickly. Time the crop planting carefully so the crop will be as competitive as possible.

Crop rotation prevents or reduces buildup of high populations of certain weeds common to a particular crop. When following the same crop and cultural practices year after year on the same land, crop-associated weeds tend to multiply rapidly and compete successfully with the crop plants. For example, to manage jointed goatgrass, a winter annual weed in winter wheat, rotate to spring crops where tillage prior to spring planting kills the weed.

Rotating crops is an efficient way to reduce certain weed populations. When combined with chemical control, rotation offers an effective way to control most weeds. Crop rotation often improves crop quality and yields, reduces plant disease, nematode, and insect problems, and improves soil conditions. If using residual herbicides along with crop rotation, make sure the herbicide will not injure subsequent crops.

Nurse crops or companion crops are planted with the desired crop to suppress weed growth during crop establishment. Nurse crops germinate and grow quickly which lessens weed pressure. You can either control nurse crops with chemicals once the primary crop becomes established or use an early maturing annual as a nurse crop that dies out as the desired crop becomes established. For example, to establish alfalfa without using herbicides, plant oats (nurse crop) with the alfalfa to compete with the weeds until the alfalfa takes hold. Select nurse crops carefully because they can compete for available resources, just like weeds do.

Irrigating fields before planting may cause many weed seeds to germinate. Control germinated weeds with mechanical or chemical methods before planting the new crop.

Biological Control

Biological weed control uses living organisms (insects, animals, pathogens) to control the weeds but not harm other plants or crops. The objective of biological control is reduction of weed populations to an acceptable level, not eradication. Biological control works particularly well in rangeland, forests, and noncropland areas where weeds live in a relatively undisturbed habitat and where other control methods are prohibitively expensive.

Insects have been used most successfully to date. Other biocontrol agents (natural enemies) include disease organisms and selective grazing by livestock, rodents, and fish. Scientists collect natural enemies from areas of the world where the weed is controlled by its natural enemies in its native habitat. Scientists then test to make sure the natural enemy (agent) attacks only the target weed and not any economically important plants or animals. The agent also must survive in the new environment. Once agents pass these tests, they are mass reared in the laboratory and released into the field. It may take 3 to 10 years for the agent to effectively suppress weeds to a noneconomic level.

Insects, disease organisms, or other predators control weeds by:

- killing the plant directly,
- weakening the weed so other more aggressive plants can outcompete it,
- reducing weed reproduction by destroying flowers or seeds, and
- creating wounds such as insect damage, which allows diseases to enter the weed and infect it.
Biological weed control can be very effective but has limitations. A single biological control agent cannot control a broad spectrum of unrelated weed species. Each natural enemy feeds on only one or several closely related weed species. Biological control is generally a slow process and does not provide immediate or total weed control. Some weeds always must be present to sustain the biological control agent’s population.

Biological control often uses several agents to attack one plant species in different ways. One agent may attack the seed, one the roots, and another the stem. This strategy increases the overall effectiveness of the biocontrol program.

Some biological weed control agents in Washington

<table>
<thead>
<tr>
<th>Problem weed</th>
<th>Agent</th>
<th>Plant target</th>
<th>Agent type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada thistle</td>
<td>C. litura</td>
<td>root</td>
<td>weevil</td>
</tr>
<tr>
<td>U. cardui</td>
<td></td>
<td>stem</td>
<td>gall fly</td>
</tr>
<tr>
<td>O. ruficuda</td>
<td></td>
<td>seed head</td>
<td>fly</td>
</tr>
<tr>
<td>Diffuse knapweed</td>
<td>U. affinis</td>
<td>seed head</td>
<td>gall fly</td>
</tr>
<tr>
<td>U. quadrifasciata</td>
<td></td>
<td>seed head</td>
<td>gall fly</td>
</tr>
<tr>
<td>S. jugoslavica</td>
<td></td>
<td>root boring</td>
<td>beetle</td>
</tr>
<tr>
<td>P. inspersa</td>
<td></td>
<td>root boring</td>
<td>moth</td>
</tr>
<tr>
<td>Rush skeleton-weed</td>
<td>C. schmidt</td>
<td>stem</td>
<td>gall midge</td>
</tr>
<tr>
<td>E. chondillae</td>
<td></td>
<td>bud</td>
<td>gall mite</td>
</tr>
<tr>
<td>P. chondrollina</td>
<td></td>
<td>rust</td>
<td>fungus</td>
</tr>
<tr>
<td>Spotted knapweed</td>
<td>U. affinis</td>
<td>seed head</td>
<td>gall fly</td>
</tr>
<tr>
<td>U. quadrifasciata</td>
<td></td>
<td>seed head</td>
<td>gall fly</td>
</tr>
<tr>
<td>M. paucipunctella</td>
<td></td>
<td>seed head</td>
<td>moth</td>
</tr>
<tr>
<td>A. zoeana</td>
<td></td>
<td>root boring</td>
<td>moth</td>
</tr>
</tbody>
</table>

Washington has several biological control success stories. Two leaf-feeding beetles and a gall-forming midge were successfully introduced to control St. Johnswort, L., in rangeland. A program using the cinnabar moth and a flea beetle is successfully controlling tansy ragwort, L. More programs (nearly 30) are ongoing and many biological control agents are under research and development.

Chemical Control

Herbicides are chemicals that kill, change, or inhibit plant growth. They are “phytotoxic,” meaning injurious or toxic to plants. Although herbicides are efficient weed management tools, improper use or abuse of these chemicals continues to jeopardize the continued availability of some herbicides. You must understand the complexities associated with chemical weed control to use herbicides safely and effectively.
Herbicide Activity and Selectivity

To select the best herbicide for a particular weed, you must understand how herbicides:

- enter and move in plants,
- kill or control plants, and
- can be used to kill only the targeted weeds, not the crop or other plants (selective control).

Uptake and Movement—Contact versus Translocated

Herbicides must be absorbed by the plant. They are either applied: 1) directly to the plant, or 2) to the soil where the weed roots or emerging shoots absorb the herbicide. Herbicide movement and activity within a plant differs among plant species. **Herbicides only need to kill the shoots of annuals or biennials, but must move to the roots to control perennials.**

Contact herbicides generally are applied directly to plant foliage and kill only plant parts they directly contact. They do not move (translocate) throughout a plant. They rupture cell membranes so the cell contents leak out. Activity is often very quick with visible damage occurring in a few hours. **You must obtain even herbicide distribution over the entire weed.** Only the areas the chemical touches will die.

Contact herbicides effectively control some annual weeds, but kill only the shoots of perennial weeds, leaving the underground system to resprout. Repeated applications to perennial weeds may deplete the food reserves in underground plant parts, eventually causing death.

A common use of nonselective contact herbicides like endothall, is the preharvest drying (desiccation) of crop foliage in potato and seed crop production. In these cases, quick-acting herbicides with short-term residual activity are best. Another popular use of contact herbicides is to control emerged weeds before planting or before crop emergence. Some contact herbicides such as Buctril and Basagran are used selectively in crops to control certain weeds.

Translocated (systemic) herbicides (foliar-applied) are absorbed through the foliage or shoots and move throughout plants. These herbicides move with the water or sugar transport system to the roots or growing tips of plants. For example, glyphosate applied to the foliage enters the conductive tissues in plants and moves to actively growing plant parts such as shoot tips and roots. As a result, injury is often first seen at growing points. Death of the plant occurs later, days or weeks following application. Good control requires actively growing plants which are transporting sugars and water, thus moving the herbicide throughout the plant. If the plant is stressed or not transporting sugars and water, little herbicide movement occurs, and poor control may result.

Some of these chemicals are selective and will control broadleaf weeds in grass crops or vice versa. Because they can move within the plant, some of these chemicals effectively control perennial weeds and do not have to be applied uniformly over the whole plant to produce good results. Most herbicides are translocated or systemic herbicides. Some examples are 2,4-D, MCPA, picloram, diuron, thifensulfuron, glyphosate, and dicamba.
Seedling and root inhibition herbicides (soil-applied) are referred to as “residual herbicides.” They are applied to the soil and generally inhibit cell division or root and shoot growth in germinating seedlings.

Herbicides applied to the soil surface must move into the weed’s root zone or the zone where weed seeds germinate to become available for absorption by the weeds. They must be present in the soil-water solution to be available for plant uptake. You can move herbicides into the soil solution by adding water to the soil (either rainfall or overhead irrigation), by mechanical incorporation with tillage equipment, or by injecting herbicide directly into the soil (soil injection). Although several products work well in dry soil after being mechanically incorporated, it is best to avoid applying herbicides until moisture is or will soon be available.

These chemicals typically are active in the soil for extended periods of time. The length of their soil residual activity depends on the specific herbicide, the rate of application, soil type, rainfall and susceptibility of weed species. Long-term residual herbicides have the potential to remain active for greater than one year.

Soil-applied residual herbicides depend on proper placement or incorporation into the soil profile to become active. They must be available where the weed seeds or roots are. Take care not to place herbicide where it can contact desirable vegetation (roots and shoots).

Soil residual herbicides generally have little effect on plants when sprayed on foliage. The main effects occur when they are absorbed by underground shoots or roots in the soil.

Modes of Herbicide Action

Understanding how herbicides control weeds is important for selecting the proper herbicide and making an effective application. It also may help you identify herbicide injury in plants. Seven major modes of action are discussed.

Growth regulators disrupt the hormone balance and protein synthesis in plants, causing growth abnormalities. Growth regulators selectively kill broadleaf weeds in range and crop grasses. Grasses are generally tolerant to these chemicals, but injury can occur if applied at the wrong growth stage or at high rates. These herbicides translocate to the growing points of the plants, and injury symptoms appear in new plant tissue. An early symptom is often epinasty, which is the abnormal bending or twisting of shoot tips. Most growth regulators enter the plant through the leaves, but some root uptake is also possible.

<table>
<thead>
<tr>
<th>Growth Regulators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical family</td>
</tr>
<tr>
<td>Phenoxy acetic acids</td>
</tr>
<tr>
<td>Benzoic acids</td>
</tr>
<tr>
<td>Pyridines</td>
</tr>
<tr>
<td>Amino acid derivatives</td>
</tr>
</tbody>
</table>

Amino acid synthesis inhibitors prevent the production of amino acids that form proteins and are fundamental to normal plant development. These herbicides translocate through the plants from soil or foliar applications. Symptoms of activity include stunting, yellowing (chlorosis), and purpling of leaves.

<table>
<thead>
<tr>
<th>Amino Acid Synthesis Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical family</td>
</tr>
<tr>
<td>Sulfonylureas</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Imidazolinones</td>
</tr>
<tr>
<td>Amino acid derivatives</td>
</tr>
</tbody>
</table>

Lipid inhibitors prevent production of fatty acids that make cell membranes and are required for new plant growth. They translocate through the plants from foliar applications. Lipid inhibitors are effective against most annual and perennial grasses; broadleaf plants are tolerant. Symptoms of inhibition activity usually are stunting, yellowing (chlorosis), or browning of leaves.

<table>
<thead>
<tr>
<th>Lipid Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical family</td>
</tr>
<tr>
<td>Cyclohexanediones</td>
</tr>
<tr>
<td>Aryloxyphenoxypropionates</td>
</tr>
</tbody>
</table>

Seedling growth inhibitors interfere with new plant growth, stopping normal seedling root or shoot development. They must be applied to the soil to act on emerging weed seedlings. Symptoms include stunted or swollen roots on emerging seedlings, or seedlings that never emerge.

<table>
<thead>
<tr>
<th>Seedling Growth Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical family</td>
</tr>
<tr>
<td>Dinitroanilines</td>
</tr>
<tr>
<td>Acetanilides</td>
</tr>
<tr>
<td>Thiocarbamates</td>
</tr>
</tbody>
</table>
Photosynthesis inhibitors interfere with photosynthesis (conversion of water and carbon dioxide to sugar in the presence of sunlight). The result is a buildup of toxic products. The triazine, phenylurea, and uracil herbicides are root- or foliar-absorbed and translocated to leaves; symptoms generally occur along the leaf margin first. Nitrile and benzothiadiazole herbicides do not translocate and must be applied postemergence for contact action. Symptoms appear where the contact occurs, including yellowing (chlorosis) or death (necrosis) of leaf tissue.

Photosynthesis Inhibitors

- **Chemical family**
 - Triazines
 - Phenylureas
 - Uracils
 - Benzothiadiazoles
 - Nitriles

- **Examples**
 - Princep, Sencor, Aatrex
 - Spike, Lorox, Karmex
 - Sinbar, Hyvar
 - Basagran
 - Buctril

Cell membrane disrupters destroy plant tissue by rupturing plant cell membranes. These contact herbicides have no mobility in the plant and must be applied postemergence. They are excellent for foliage burndown and control of annual weeds. Symptoms include rapid browning (necrosis) of plant tissue.

Cell Membrane Disrupters

- **Chemical family**
 - Bipyridylums
 - Diphenyl ethers

- **Examples**
 - Gramoxone, Reglone
 - Blazer, Goal

Pigment inhibitors prevent plants from forming chlorophyll (green pigments) used in photosynthesis. These soil-applied herbicides translocate to plant leaves. Without chlorophyll production, the affected leaves turn white or translucent. Emerging weeds appear white prior to dying. Because emerged plants constantly replace chlorophyll, amitrole turns plants white following treatment.

Pigment Inhibitors

- **Chemical family**
 - Isoxazolidinones
 - Pyridazinones

- **Examples**
 - Command
 - Solicam, Evital

Selective versus Nonselective Activity

A major advantage of chemical weed control over some tillage operations is that some herbicides only kill targeted weeds. Herbicides that control weeds while doing little or no damage to the crop are selective herbicides. Nonselective herbicides kill or control almost all plants—weeds and desirable vegetation.

A plant is either susceptible (injured or killed) or tolerant (survives without injury).

Selectivity depends on many interrelated factors. It is influenced by the kind and amount of herbicide applied, how and when applied, and under what environmental conditions. Closely related plants may respond differently to applications of the same herbicide. Selectivity may be lost through applicator mistakes or by applying herbicides to stressed crops or crops at the wrong growth stage. You must understand the reasons for herbicide selectivity to avoid injuring crops.

Two groups of herbicide selectivity factors exist: plant factors and chemical and application factors.

Plant Factors. The uniqueness of each plant species arises from its particular combination of structures and chemical processes (physiology). The extent to which a herbicide affects any plant species depends on the plant structure and physiology.

Structure. To be effective, the herbicide spray must enter the plant. Leaf angle, size, hairiness, and thickness of wax and cuticle greatly affect the retention and absorption of foliar-applied herbicides. Plants with upright leaves, extremely hairy leaves, or hard-to-wet leaves (waxy leaves) are less likely to retain herbicide spray. These characteristics may help make a plant either susceptible or tolerant.

Plant Physiology. Selectivity primarily depends on how the plant responds after the herbicide enters the plant. To kill susceptible weeds, the herbicide interferes with vital plant processes. (See section on “Modes of Herbicide Action.”) Some plants can quickly metabolize, detoxify, or excrete certain herbicides; thus, tolerating the herbicide. If a plant cannot metabolize the herbicide fast enough, injury or death occurs. For example, this type of selectivity allows atrazine use in corn. Corn rapidly metabolizes atrazine, whereas most weeds cannot metabolize the herbicide fast enough to avoid being killed. In certain cases, cold weather can slow a crop’s ability to metabolize herbicides and some crop injury may occur.
Chemical and Application Factors. Several physical factors affect herbicide selectivity:

- how much herbicide is applied,
- the particular formulation used,
- where it is applied,
- when it is applied, and
- the addition of adjuvants.

Application Rate. Some herbicides are selective at lower rates of application; however, when applied at a higher rate the herbicide becomes nonselective. For example, diuron is selective at low rates and provides nonselective residual control at higher rates.

Formulation. How the herbicide is formulated influences selectivity. A liquid formulation of the active ingredient may not have the same selectivity as the granular formulation. One example is using a granular formulation to control nonemerged weeds among emerged crop plants. In this case, the formulation allows the herbicide to bounce or roll off the crop and fall to the soil. It then becomes available for uptake from the soil by emerging weed seedlings. A number of herbicides are available in both granular and liquid formulations.

Application Timing. Many herbicides are effective only if applied at the proper time. The time of application may be given on the label with respect to the crop or to the weed. You must understand the following label terms as they relate to application timing.

PREPLANT TREATMENT is any application made before seeding or transplanting. Preplant soil-incorporated applications mix the herbicide into the soil zone where weeds germinate. Incorporation into the soil can be accomplished by mechanical methods, irrigation, or rainfall.

POSTEMERGENCE TREATMENT is any treatment made after emergence of a specified crop or weed. Apply the herbicide after the crop, weeds, or both are up. This is usually a foliar application. A statement on the herbicide label may indicate an application “preemergent to the crop” and “postemergent to the weeds.” If nonselective, handle them with care around desirable vegetation.

Placement. Accurate placement of nonselective herbicides can minimize or eliminate injury to desirable plants. An example is the use of simazine or diuron to control weeds in orchards and vineyards. These products are toxic to fruit trees and grapevines. Placing and keeping these herbicides in the soil above the root zone of the trees or vines allows the herbicides to control the weeds but avoid contacting the tree or vine roots.

You can control herbicide placement by using different kinds of application equipment that has shielding devices, or by using directed sprays and wiper or roller treatments.

DIRECTED SPRAYS limit herbicide contact with the crop. Usually the spray is directed to the lower part of the plant stem or trunk to keep droplets off the crop leaves while spraying small weeds.
Spray is directed at weeds below (left) or above (right) the crop.

Unused spray is caught (right) and returned to the spray tank.

WIPER TREATMENTS apply contact or translocated herbicides selectively to weeds. Wicks made of rope, rollers covered with carpet or other material, or absorbent pads (comprised of sponge or fabric) are kept wet with herbicide solution and brought into direct contact with the weeds. The herbicide is “wiped” onto the weeds, but does not touch the crop because of height differences between the crop and weeds. This treatment is for tall weeds growing above the crop or for shorter weeds between rows, depending on the design and placement of the wiper parts.

Herbicide Tolerance and Resistance

Herbicide tolerance is similar to herbicide resistance in a general sense, but the terms are distinct when used to describe specific plants and herbicides. Any plant that historically has not been affected by an herbicide is technically tolerant. For example, grasses are inherently tolerant to 2,4-D, whereas many broadleaf weeds are susceptible.

Herbicide resistance is similar to tolerance in that it describes weeds that survive herbicide application. However, resistant weeds have an evolved ability to withstand an herbicide after repeated applications. Often the resistant weed species is also resistant to other herbicides in the same herbicide family (i.e., herbicides that inhibit the same plant process). Herbicide-resistant weeds are an increasingly important problem.

The first reports of herbicide resistance in North America came from Washington in the mid-1960s when a nursery owner could no longer control common groundsel with simazine. Several other weed species have since developed resistance to triazine herbicides, such as atrazine, simazine, and other herbicides. Weed populations have developed resistance to several herbicide groups (similar modes of action). Since few new herbicides are being developed, we cannot afford to lose the use of current herbicides to resistant weeds. We must use strategies to prevent resistance development.

Resistant weeds result from natural genetic variations in a weed population. The number of resistant individuals may be very few, perhaps only one among a million plants of that weed species.

An effective herbicide may control 999,999 plants out of a million, but that one survivor produces resistant seeds. These resistant seeds germinate and their plants produce more resistant seeds. The susceptible population of weeds is controlled by the herbicide in following seasons, but the resistant weed population continues to expand.
To make matters worse, in most cases, resistant weeds can survive high rates of certain herbicides and resistance is genetically dominant (i.e., if a resistant plant and a sensitive plant cross, the offspring is resistant). Fortunately, it is usually possible to find an herbicide with a mode of action to which resistant weeds are susceptible.

The following resistance management strategies are effective for minimizing the development of herbicide-resistant weeds:

- **Use other methods of weed control** along with herbicides. This may include mowing, delayed seeding to allow mechanical control of the first flush of weeds, cultivating, planting competitive vegetation, and mulching.
- **Rotate crops regularly**, when possible. Switching from a winter crop to a spring-planted one provides the opportunity to prepare the land at a different time of the season and perhaps kill the resistant individuals. By shifting to another crop, we may use herbicides that the resistant weeds are susceptible to.
- **Rotate among herbicide families** annually if crop rotation is not a good option. To be effective, the herbicide must have a different mode of action than the one originally used. Weeds resistant to Hoelon also are resistant to Fusilade, Poast, and Assure. Glean-resistant weeds also are resistant to Oust, Harmony Extra, Matrix, and often to Arsenal, Pursuit, and Assert.
- **Do not use higher rates** when weed control starts to decline. If the uncontrolled individuals in the population are genetically resistant, increasing the herbicide dosage will not kill them. Higher rates simply eliminate the susceptible types, allowing the most resistant types to flourish. Using higher than normal rates may make resistance develop faster.
- **Kill all the targeted weeds** if possible. Hand weeding a large land area is not possible, but in small areas, this may be extremely cheap in the long-term. If a new herbicide provides 99% control the first year, the remaining 1% probably escaped, but they might be genetically resistant. Eliminate them while they are still few in number.
- **Use herbicide combinations.** Herbicide combinations generally are used to increase the number of weed species controlled. Using combinations will slow the development of resistance only in those weeds that both herbicides control. The species controlled by only one of the herbicides can develop resistance as rapidly as if that herbicide were used alone. For example, sulfonylurea herbicides are regularly tank mixed with other herbicides with different modes of action (growth regulators, amino acid synthesis inhibitors).

Use these procedures **before** resistance becomes evident. Once resistance develops, large numbers of resistant seed have already entered the soil. Eliminating the resistant type one year will not solve the problem. Once you notice an herbicide-resistant weed problem, you will likely have the problem forever. If you are not sure which herbicides have the same modes of action, refer back to pp. 12–14, or Herbicide-Resistant Weeds and Their Management, PNW437. You can also get assistance from your local Extension educator, herbicide supplier, or product representative.

Herbicide Groups

Herbicides are grouped based on their primary site of action. Currently there are 18 groups of herbicides. Herbicide labels provide information about what group a particular product belongs to. It is important to pay attention to the group classification in resistant management. To avoid selecting for herbicide-resistant weeds, do not use herbicides from the same group more than once in a three year period. Rather, rotate to a different group every year.
The table below provides a list of the herbicide groups with a few examples of their related common and trade names. For more information, look at the PNW Weed Management Handbook, MISC0049, and Herbicide Resistant Weeds and Their Management, PNW437.

<table>
<thead>
<tr>
<th>Group number and site of action</th>
<th>Examples of common active ingredient names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 Acetyl CoA carboxylase (ACCase) inhibitors</td>
<td>clethodim, sethoxydim, chloinedefop, diclofop, fenoxaprop, fluazifop, quizalofop, pinoxaden</td>
</tr>
<tr>
<td>Group 2 Acetolactate synthase (ALS) inhibitors</td>
<td>imazamox, imazapic, imazethapyr, chlorsulfuron, halosulfuron, mesosulfuron, metsulfuron, nicosulfuron, primisulfuron, sulmefuron, sulfoxuron, thifensulfuron, triasulfuron, tribenuron, trifluralin, fluroxypyr, pictalam, trifluralin, pronamide</td>
</tr>
<tr>
<td>Group 3 Microtubule assembly inhibitors</td>
<td>benefin, ethaluralin, oryzalin, pendimethalin, prodiamine, trifluralin, pronamide</td>
</tr>
<tr>
<td>Group 4 Sythetic auxins</td>
<td>2,4-D, MCPP, dicamba, mecoprop,aminopyralid, clopyralid, fluoroxypr, pictalam, trifluralin, quinlonac</td>
</tr>
<tr>
<td>Group 5 Photosystem II inhibitors</td>
<td>atrazine, simazine, bromacil, hexazinone, metribuzin, terbacil</td>
</tr>
<tr>
<td>Group 6 Photosystem II inhibitors (same site as groups 5 and 7 but different binding behavior)</td>
<td>bentazon, bromoxynil</td>
</tr>
<tr>
<td>Group 7 Photosystem II inhibitors (same site as groups 5 and 6 but different binding behavior)</td>
<td>diuron, linuron, tebufluor</td>
</tr>
<tr>
<td>Group 8 Lipid synthesis inhibitors but not ACCase inhibitors</td>
<td>cycloate, EPTC, triallate</td>
</tr>
<tr>
<td>Group 9 EPSP synthase inhibitors</td>
<td>glyphosate</td>
</tr>
<tr>
<td>Group 10 Glutamine synthase inhibitors</td>
<td>glufosinate</td>
</tr>
<tr>
<td>Group 14 Inhibitors of protoporphyrinogen oxidase</td>
<td>oxyfluorfen, flumiclorac, flumioxazin, carfentrazone, sulfentrazone, pyraflufen, saflufenacil, fluthiacet</td>
</tr>
<tr>
<td>Group 15 Inhibitors of very long chain fatty acid synthesis</td>
<td>Acetochlor, alachlor, dimethenamid, metalochlor, flufenacet, napropamide</td>
</tr>
<tr>
<td>Group 16 Unknown</td>
<td>ethofumesate</td>
</tr>
<tr>
<td>Group 20 Inhibitors of cell wall synthesis Site A</td>
<td>dichlobenil</td>
</tr>
<tr>
<td>Group 22 Photosystem I electron diverters</td>
<td>diquat, paraquat</td>
</tr>
<tr>
<td>Group 26 Unknown</td>
<td>pelargonic acid</td>
</tr>
<tr>
<td>Group 28 Inhibitors of 4-HPPD</td>
<td>pyrazosulfotole, mesotrione, topramezone</td>
</tr>
</tbody>
</table>

Label Example:

Galeston Chemical

AT2 HERBICIDE

FOR CONTROL OF CERTAIN BROADLEAF WEEDS IN CORN

ACTIVE INGREDIENT:

Atrazine: 2-chloro-ethylamino-6-isopropylamin-5-triazine ... 42%

INERT INGREDIENTS .. 58%

TOTAL .. 100%

E.P.A. Reg. No. 333-3333

KEEP OUT OF REACH OF CHILDREN
Calibration

The effectiveness of any herbicide depends on the proper application and placement of the chemical. The purpose of calibration is to ensure that application equipment uniformly applies the correct amount of material over a given area. Even if you may have the correct chemical mixture, it is still possible to apply the wrong amount if your equipment is not calibrated properly. Too little herbicide results in poor weed control. Application of too much herbicide may result in crop damage, illegal residues in foods, pollution, environmental and human health problems, and a waste of money. Herbicide delivery rate can change with equipment wear, gauge error, nozzle wear, wheel slippage, and speedometer error.

Application equipment suppliers often provide charts and tables to help you determine equipment set-up and approximate desired delivery rates; however, such sources of information only estimate delivery rates. Charts and tables cannot account for equipment wear and inaccurate gauges, and speedometers. You must calibrate equipment to obtain more reliable determinations of equipment delivery rates.

Calibration is simply determining the equipment’s delivery rate, or the amount of material delivered (applied) from the application equipment over a known area.

You must make several decisions before every herbicide application.

- Determine and possibly adjust the equipment’s delivery rate (calibration).
- Determine how much product (granules or liquid) is necessary for the job.
- Determine the appropriate amount of carrier for the amount of product to be used.

The product label, calibration, and your calculations answer these questions.

To properly calibrate, you may need a bucket marked in gallons, a scale, a stopwatch, tools, a container marked in ounces for nozzle output, a tape measure, and flags or stakes for marking distances. Unless your equipment is new, it probably has some pesticide residue in and on the various equipment components. Therefore, wear a pair of rubber gloves. A pocket calculator helps reduce mathematical errors.

Granular Applicator Calibration

Calibrating granular application equipment requires you to measure the amount of granules spread over a known area. Calibrate using the herbicide granule to be applied, because each granule type flows differently. Recalibrate each time you switch the type or rate of granular herbicide.

Variables that Determine Granular Applicator Output — Two variables affect the amount of granules applied per unit area: the size of the gate opening and the ground speed of the applicator.

The rate that granules flow out of the applicator depends on the size of the gate opening. A larger opening allows more granules to flow for a higher delivery rate. Changing the size of the gate opening significantly increases or decreases the delivery rate.

The speed at which the granular applicator travels also affects total output per unit area. When travel speed increases, less material is applied per unit area, and when speed is reduced, more material is applied (except with wheel-driven applicators). When small changes to the delivery rate are necessary, adjust travel speed.

Adjust the gate opening or travel speed to fine-tune your application equipment. It may take many adjustments before the applicator is calibrated correctly.
Conduct the calibration test over a measured area where the granules can be collected (tarped area, driveway) or use a collection device. The catch container must not interfere with the chemical delivery. Use the following steps to calibrate a granular applicator.

1. Measure a known area (e.g., measure swath width, multiply swath width by course length to find covered area).
2. Set up a collection device: an attachment or a tarp on the ground.
3. Apply at proper speed and gate setting.
4. Collect and weigh the amount of chemical “spread” over the measured area.
5. The delivery rate is the weight of material collected for the area covered.
6. Convert units to a pound per acre basis, or whatever basis the label states.
7. Adjust gate setting or speed to get desired output.

Example:

Prior to planting alfalfa you choose to apply a granular formulation of a preplant herbicide. The spreader covers a swath of 30 feet. At the set speed and gate openings, collect granules in a collection device while covering a 100-foot course. The collected material weighs 1.25 lbs. The label states an application rate of 20 pounds of product per acre.

- What is the equipment’s delivery rate in pounds per acre?
 - Delivery rate is the amount applied per unit area, 1.25 lbs per 3,000 sq ft
 - Convert 3,000 sq ft to an acre (43,560 sq ft = 1 acre)
 - The rate is less than desired and needs to be increased

\[
\frac{1.25 \text{ lbs}}{3000 \text{ sq ft}} \times \frac{43560 \text{ sq ft}}{\text{acre}} = 18.15 \text{ lbs per acre}
\]

It is easy to adjust delivery rates. For small changes you may alter the speed of travel. For large changes, you may need to adjust the size of the opening to increase or restrict the flow.

Repeat calibration for any change in conditions (temperature, humidity, lot number of granules), when using a different chemical, driving at a different speed, or changing the agitator speed.

Sprayer Calibration

Proper sprayer function is essential for accurate sprayer calibration; therefore, follow the procedures outlined below before calibrating the equipment.

- Be sure sprayer nozzle tips are appropriate for the spray application to be made. Consult nozzle manufacturer’s recommendations and the herbicide label.
- Thoroughly clean all nozzles, nozzle tips, and screens to ensure proper operation. Use a soft brush, not wire or any hard material. Add water to the spray tank and visually check nozzle output during sprayer operation. Discard and replace nozzle tips producing distorted spray patterns.
- Check spray volume output of all nozzles and replace nozzle tips that differ by more than 10% of the average output of all nozzles or replace all the nozzles if more than one is off.
- Check all pressure gauges. If a gauge is rusty or of questionable accuracy, replace it.

Variables That Determine Sprayer Output

Three variables affect the amount of spray solution applied per area: nozzle output, nozzle spacing or spray width, and ground speed of the sprayer.
Nozzle output varies with the pressure and the size of the nozzle tip. Increasing the pressure or using a nozzle tip with a larger orifice (opening) increases the output. Increasing pressure does not give a proportional increase in the output. For example, doubling the pressure does not double the flow rate; you must increase the pressure fourfold to double the flow rate.

Effects of sprayer pressure on delivery rate (speed constant)

<table>
<thead>
<tr>
<th>Sprayer pressure (psi)</th>
<th>Sprayer delivery rate (gal/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>160</td>
<td>40</td>
</tr>
</tbody>
</table>

Therefore, adjust pressure for minor changes in spray delivery rate, not major ones. Operating pressure must be maintained within the recommended range for each nozzle type to obtain a uniform pattern and to minimize drift.

An easy way to make a large change in flow rate is to change the size of the nozzle tips. Depending on operating pressure, the speed of the sprayer, and the nozzle spacing, small changes in nozzle size can significantly change sprayer output per acre. Nozzle manufacturers’ catalogs give information for selection of the proper tip size.

For ground sprayers, delivery rate is inversely proportional to the speed of the sprayer; that is, as speed increases, the amount of spray applied per unit area decreases at an equal rate. If spray pressure remains constant, doubling the sprayer’s ground speed will reduce the amount of spray per area by one-half. Wheel-driven sprayers do not conform to this rule because the speed of travel also affects the pressure.

Sprayer calibration determines the amount of spray volume the equipment delivers per unit area. Most labels direct the user to apply a specific amount of herbicide per acre, but some label instructions include directions for an amount of herbicide to be applied per 1,000 sq ft or some other area measure. Calibrate the sprayer and determine the delivery rate in the units used on the label (gallons per acre, per 1,000 sq ft, etc.).

Boom Sprayer Calibration. The following calibration method is only one of many used for boom sprayers.

- **Test nozzles.** Make sure all nozzles have the same output and have good spray patterns.
- **Determine travel speed.** Select a reasonable operating speed for the terrain, soil condition, and durability of the spray equipment. Record the tachometer or speedometer readings and the gear setting used to maintain the selected speed. Fill tank at least half full to simulate application conditions. Time how long it takes the spray equipment to travel a set distance (e.g., 200 ft) in similar field conditions; this accounts for wheel slippage. Time equipment in both directions and calculate the average time. Use the following formula to calculate speed in mph:

\[
\text{distance in feet} \times 60 \\
\text{time in seconds} \times 88 = \text{mph}
\]

EXAMPLE:

\[
200 \text{ ft} \times 60 \\
30 \text{ seconds} \times 88 = 4.5 \text{ mph}
\]

- **Determine nozzle output.** Select and record the spray pressure at which the system will be operated (check label and nozzle recommendations for guidelines). Adjust to desired pressure while pump is operating at normal speed and water is actually flowing through the nozzles. (Minimize off-target drift by operating at the lower end of a nozzle’s pressure range).
 - Collect spray from nozzles (in ounces) at the pressure to be used for a time interval easily converted to one minute (e.g., 30 sec x 2). The more nozzles you collect from, the more accurate the calibration. Calculate the average output from the nozzles sampled.

EXAMPLE:

\[
16 \text{ oz} + 16.5 \text{ oz} + 17 \text{ oz} + 16 \text{ oz} + 16.5 \text{ oz} = 82 \text{ oz} \\
82 \div 5 \text{ nozzles} = 16.4 \text{ oz in 30 sec} = 32.8 \text{ oz per min}
\]

Convert to gallons per minute.

\[
\frac{32.8 \text{ oz per minute}}{128 \text{ oz per gal}} = 0.256 \text{ gals per minute (GPM)}
\]
- **Measure nozzle spacing.** Measure the distance between two nozzles, center to center.

EXAMPLE: 20 inches.

- **Calculate the delivery rate in gallons per acre (GPA).** Use the following formula by inserting speed in mph, nozzle spacing in inches, and the average gallon per minute output of a nozzle.

\[
\text{GPA} = \frac{\text{distance in feet} \times 60}{\text{time in seconds} \times 88}
\]

EXAMPLE:

\[
\begin{align*}
200 \text{ ft} & \times 60 \\
30 \text{ seconds} & \times 88 = 4.5 \text{ mph}
\end{align*}
\]

Sprayer Calibration Example

Sprayer is set up with 24 nozzles at 20-inch spacings, 40-foot boom swath, and 40 psi. Set course at 100 feet. It takes the equipment 17 seconds to travel 100 feet in fourth gear with full throttle. The 6 nozzles delivered 17 oz, 16.5 oz, 17.5 oz, 17 oz, 16.75 oz, and 17.25 oz in 30 seconds.

- calculate speed

\[
\frac{100 \text{ ft} \times 60}{17 \text{ seconds} \times 88} = 4.0 \text{ mph}
\]

- find average nozzle output

\[
17 + 16.5 + 17.5 + 17 + 16.75 + 17.25 = 102 \text{ oz}
\]

\[
102 \div 6 = 17 \text{ oz}
\]

- calculate GPM (gallons per minute)

\[
\frac{17 \text{ oz in 30 sec}}{128 \text{ oz per gal}} = \text{GPA} = 0.265 \text{ gpm}
\]

- measure nozzle spacing

20 inches

- use this formula to calculate gallons per acre

\[
\frac{5940 \times \text{nozzle output in GPM}}{\text{mph} \times \text{nozzle spacing in inches}} = \text{GPA}
\]

\[
\frac{5940 \times 0.265}{4.0 \times 20} = 19.7 \text{ gals per acre}
\]

Sprayer calibration results are valid only for the speed, nozzles, pressure, and spray width (nozzle spacing) used during the calibration process. Significant changes in any one of these factors will require another calibration check. Calibrate your sprayer more than once per season.

Another method of calibration is to spray an acre. Measure how much water it takes to cover one acre, which is the gallon per acre output for the sprayer. For example, a sprayer has a 60-foot swath. To cover one acre the sprayer needs to travel 726 feet (43,560 sq ft ÷ 60 ft = 726 ft). After spraying the 726-ft course, it took 32 gallons to exactly refill the spray tank to the level prior to spraying the acre. This means the sprayer is delivering 32 gallons per acre. Always accurately measure the water. Check all nozzles for uniform output with this method.

Compressed Air Sprayer Calibration. Most compressed air sprayers are small, hand-operated units carried by the operator; consequently, application factors such as speed, spray width, and pressure depend on who is spraying.

The following is just one of several possible methods used to calibrate hand-pressurized sprayers.

1. Measure and mark a square area 18.5 ft x 18.5 ft, preferably on a surface that will easily show the spray pattern width (for example, a paved parking lot).
2. Starting with an empty liquid spray tank and using a container graduated in ounces, add 2 quarts (64 ounces) of water to the spray tank.
3. Pressurize the sprayer and spray the area within the marked square. Maintain uniform operator walking speed, nozzle height, and tank pressurization.
4. Depressurize the spray tank by opening the filler cap; drain the spray wand back into the tank by holding the spray wand above the tank and opening the spray valve on the wand.
5. Using a container marked in ounces, determine the number of ounces remaining in the sprayer.
6. Calculate the number of ounces sprayed by subtracting the number of ounces left in the sprayer from the 64 ounces originally added to the spray tank.
7. The number of ounces sprayed on the defined area is equal to the gallon per acre delivery of that sprayer. For example, if the number of ounces used to cover the marked area (342.25 sq ft or 1/128 of an acre) was 36 oz, then the sprayer is actually delivering about 36 gallons per acre.
8. Again, this applies only to the operator who calibrated the sprayer.
Changing Sprayer Delivery Rate. It is easy to adjust sprayer delivery rates. If your sprayer is delivering less than or more than enough spray to each acre, you can change the rate by using one of three methods:

- **Change the nozzle orifice.** The larger the hole in the nozzle tip, the more spray is delivered. This is usually the preferred method when making substantial changes in sprayer output.
- **Change the speed of the sprayer.** Slower speed means more spray is delivered over the area; faster speed means less spray is delivered over the area. Doubling the ground speed of the sprayer reduces the sprayer delivery rate by one-half, except for wheel-driven sprayers. Speed changes may be practical for small adjustments in delivery rate, but not for large adjustments.
- **Change the pump pressure.** Lower pressure means less spray is delivered; with higher pressure, more spray is delivered. This is usually not a good method for large adjustments because large changes in pressure will alter the nozzle pattern. To double output, you must increase the pressure fourfold.

Mixing and Calculations

Calculating the correct amount of product needed and proper mixing are essential for safe, effective, legal applications. Directions for mixing are given on the herbicide label and calculations are generally necessary. Mixing and calculations vary depending on the type of herbicide used.

Label rates may vary depending on site conditions. Read the label carefully to determine the proper rate of application.

To determine the actual amount of product needed for the application, know the total area to be treated and read the label carefully for the proper rate. The units of application rate vary among labels and written recommendations. Most labels give the application rate in the amount of *product* per acre. Many recommendations state the application rate in amount of *active ingredient* (ai) or *acid equivalent* (ae) per acre. Always convert rates to the amount of product when calculating how much product you will need.

These formulas will help you calculate the amount of product and active ingredient equivalents for dry and liquid formulations.

Dry Formulations

Formulas to convert commercial product and ai

- amount product x % ai = amount ai
- amount ai ÷ % ai = amount product

Liquid Formulations

Formulas to convert commercial product and ai

- gal product x lb ai/gal = lbs ai
- lbs ai ÷ lb ai/gal = gal product

Following are some examples of these variations. Determine how much product is needed to cover 16 acres for each of the different rates.

- 6 lbs dry product per acre

 6 lbs product/A x 16 acres = 96 lbs product

- 1 lb ai per acre of a 75% wettable powder (need to convert ai to product)

 1 lb ai/A ÷ 0.75 lb ai/lb product = 1.33 lbs product/A

 1.33 lbs product/A x 16 acres = 21.3 lbs product

- 1 pint liquid product per acre

 1 pt/A x 16 acres = 16 pints or 2 gallons

- 1 lb ai per acre of a 4 lb ai per gal emulsifiable concentrate (need to convert ai to product)

 1 lb ai/A ÷ 4 lb ai/gal = 0.25 gals product/A

 0.25 gals/A x 16 acres = 4 gallons product

Often, mixing two or more chemicals together in the tank will save time, money, and increase the number of weeds controlled. Fertilizers also are commonly added with some herbicides. It is legal to tank-mix chemicals if all products are labeled for the application site, but not if the label prohibits mixing specific pesticides.
You cannot tank-mix if the combination of products exceeds the highest rate allowed by either herbicide label. For example, the highest labeled rate of Buctril® is 1.5 pints/acre (equals 0.38 lb ai/A of bromoxynil). If you want to tank-mix 1.5 pints/A Buctril® (equals 0.38 lb ai/A of bromoxynil) and 1.5 pints/A Bronate® (equals 0.38 lb ai/A of bromoxynil + 0.38 lb ai/A of MCPA), the combination is illegal because it exceeds the highest rate of bromoxynil, 0.38 lb ai/A. If both products were mixed at the 1.5 pint/acre rate, the total amount of bromoxynil would be 0.76 lb ai/A. This is greater than allowed.

Illegal application of bromoxynil

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 pints/A Buctril®</td>
<td>0.38 lb ai/A of bromoxynil</td>
</tr>
<tr>
<td>1.5 pints/A Bronate®</td>
<td>+ 0.38 lb ai/A of bromoxynil</td>
</tr>
<tr>
<td>total in tank mix</td>
<td>0.76 lb ai/A of bromoxynil</td>
</tr>
<tr>
<td>* this is over the legal limit of 0.38 lb ai/A</td>
<td></td>
</tr>
</tbody>
</table>

Legal application of bromoxynil

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75 pints/A Buctril®</td>
<td>0.19 lb ai/A of bromoxynil</td>
</tr>
<tr>
<td>0.5 pints/A Bronate®</td>
<td>+ 0.13 lb ai/A of bromoxynil</td>
</tr>
<tr>
<td>total in tank mix</td>
<td>0.32 lb ai/A of bromoxynil</td>
</tr>
<tr>
<td>* this is under the legal limit of 0.38 lb ai/A</td>
<td></td>
</tr>
</tbody>
</table>

Unless the label actually recommends a particular mixture, the products may be incompatible. If they are incompatible, they may form gelatin or crystals or may become inactive. Herbicide mixtures are advantageous because they give better weed control, but some also may cause crop injury. Prior to tank mixing products, read the label and make sure tank-mixing is legal. Then conduct a jar test for physical compatibility. Many labels give directions for compatibility tests. If not, mix the products with their carrier in a small jar at proper concentrations. Watch and feel for a reaction. Heat is often generated during reactions. If the products do not mix properly, compatibility agents often can solve the problem. Repeat the jar test with the compatibility agent. If everything looks fine, test the tank mix on a small portion of the field to make sure the combination is still effective and safe to the crop. Tank-mix herbicides in the following sequence to lessen incompatibility problems, unless otherwise directed by the label. First, partially fill the tank with carrier. Next, add dry or flowable formulations and get them into suspension by agitation before adding the emulsifiable concentrates. Next, add those products that form true solutions with the carrier and finish with adjuvants. Finally, add the remaining carrier to bring the spray mix to the full volume required for the job.

Many herbicide products recommend adding adjuvants to the tank mix to increase product effectiveness. Surfactants include spreaders and stickers that change the surface tension of the spray solution. By reducing the surface tension of the spray solution, spray droplets are more likely to remain on leaves without bouncing or rolling off. They also spread over a greater area on the leaves. Some herbicides need penetrants to aid herbicide uptake through waxy leaves and stems. Weeds densely covered with hairs may require adding a spreader so the droplets pass through the hairs to reach the leaf.

Buffers are adjuvants that adjust the pH of the spray solution. They usually reduce the pH in order to (a) avoid hydrolysis of certain pesticides in alkaline water, or (b) improve uptake through the plant cuticle. Acidic herbicides like 2,4-D and dicamba penetrate into the plant better if applied in an acidic solution. Other adjuvants include thickeners and foaming agents. Read the label directions for recommendations and rates.

The following calibration and mixing problems will help you become familiar with the calculations often used in herbicide applications.

Calibration Calculations

1. A wheel-driven sprayer travels 4.5 mph, keeping pressure at 40 psi. The boom has 18 nozzles spaced 20 inches apart, a 30-foot swath. A calibration course is set at 100 feet, which is covered in an average of 15 seconds. From five nozzles, 12 oz is the average volume collected over the course. What is the sprayer delivery rate in gallons per acre?

 A. The method using the formula

 \[
 \text{GPA} = \frac{5940 \times \text{nozzle output in GPM}}{\text{mph} \times \text{nozzle spacing in inches}}
 \]

 step 1. find nozzle output in GPM

 - 12 oz in 15 sec = 48 oz per min
 - 48 oz per min = 0.375 GPM
 - 128 oz per gal = 0.375 GPM

 step 2. complete the formula

 \[
 5940 \times \frac{0.375}{4.5 \times 20} = 24.75 \text{ GPA}
 \]
B. A method using straight math

step 1. determine area covered.
area = swath width x course length
30 ft. x 100 ft. = 3,000 sq ft

step 2. determine spray output of entire boom in **gallons**
12 oz./nozzle x 48 nozzles = 576 ounces
576 ounces ÷ 128 oz./gal. = 4.5 gals

step 3. convert delivery rate to acres
1.69 gals = 24.5 GPA

2. A boom sprayer has an auxiliary pump set at 30 psi. A speed course test indicates equipment travels 200 feet in 23 seconds. The boom has 48 nozzles at 20-inch spacings, covering an 80-foot swath. In 15 seconds, 8.25 ounces of spray is the average collected from four nozzles. What is the sprayer delivery rate in gallons per acre?

A. The method using the formula

\[
\text{MPH} = \frac{\text{distance covered in ft.} \times 60}{\text{time in seconds} \times 88}
\]

\[
200 \times 60 = 5.9 \text{ MPH}
\]

step 1. determine spray output of entire boom in **gallons**
8.25 oz./nozzle x 48 nozzles = 396 oz
396 oz ÷ 128 oz./gal = 3.1 gals

step 2. determine delivery rate to acres (both area and gallons were measured for 15 sec.)
\[
\frac{3.1 \text{ gals}}{10440 \text{ sq ft}} \times \frac{43560 \text{ sq ft}}{\text{acre}} = 12.9 \text{ GPA}
\]

Mixing Problems

1. Boom sprayer has an 80-foot boom, travels 6 mph, and the auxiliary pump is set at 30 psi. The spray tank is 600 gallons. Equipment is calibrated to deliver 12.9 GPA. An 80-acre alfalfa field has a weed problem and needs a broadcast treatment. The selected herbicide states the recommended rate based on organic matter and clay content to be 2/3 to 3/4 pounds product per acre.

- How many acres will a tankload cover?

acres = tank in gallons ÷ GPA

600 gallons ÷ 12.9 GPA = 46.5 acres

- How much spray solution is needed to treat the remaining 33.5 acres (80 acres – 46.5 acres) of alfalfa?

33.5 acres x 12.9 gals/A = 432 gallons of spray

- How much product should be added for each tank batch (600 and 432 gals) if applied at the maximum rate?

600 gallons covers 46.5 acres —>

46.5 acres x 0.75 lbs product/A = 34.9 lbs product

432 gallons covers 33.5 acres —>

33.5 acres x 0.75 lbs product/A = 25.1 lbs product
2. To treat the same 80-acre alfalfa field, with the same set-up as above, determine the amount of product necessary for each tank batch for a recommended rate of 0.5 lbs active ingredient per acre for a 75% wettable powder.

- How much product is needed per acre to equal the 0.5 lb ai/A rate?

Formulas to convert commercial product and ai

- \(\text{amount product} \times \% \text{ ai} = \text{amount ai} \)
- \(\text{amount ai} \div \% \text{ ai} = \text{amount product} \)

\[
0.5 \text{ lb ai} \div 0.75 (\% \text{ ai}) = 0.67 \text{ lbs product}
\]

- How much product should be added for each tank batch (600 and 432 gals) if applied at the 0.5 lb ai/A (0.67 lbs product/A)?

600 gallons covers 46.5 acres

\[
46.5 \text{ acres} \times 0.67 \text{ lbs product/A} = 31.2 \text{ lbs product}
\]

432 gallons covers 33.5 acres

\[
33.5 \text{ acres} \times 0.67 \text{ lbs product/A} = 22.4 \text{ lbs product}
\]

3. Twenty acres of rangeland has a widespread weed infestation. The label recommends 3 to 4 pints of product per acre for weed control. The spray equipment has a 400-gallon tank and delivers 18 GPA.

- How much spray solution is needed to treat the area?

20 acres \times 18 \text{ GPA} = 360 \text{ gallons}

- What is the minimum amount of product (in gallons) needed to treat the area?

20 acres \times 3 \text{ pints/A} = 60 \text{ pints}

60 pints \div 8 \text{ pints/gallon} = 7.5 \text{ gallons}

4. To treat the same 20-acre rangeland, with the same set-up as in number 3, determine the amount of product necessary for a recommended rate of 1.5 lbs active ingredient per acre for a 2 lb ai/gal emulsifiable concentrate.

- How much product is needed per acre to equal the 1.5 lb ai/A rate?

Formulas to convert commercial product and ai

- \(\text{gal product} \times \text{ lb ai/gal} = \text{lbs ai} \)
- \(\text{lbs ai} \div \text{ lb ai/gal} = \text{gal product} \)

\[
1.5 \text{ lbs ai} \div 2 \text{ lbs ai/gal} = 0.75 \text{ gals product}
\]

- How much product should be added to make up 360 gallons of spray if applied at 1.5 lb ai/A (0.75 gals/A)?

20 acres \times 0.75 \text{ gals/A} = 15 \text{ gallons of product}
Laws Affecting Weed Management

Washington State Noxious Weed Law—WAC 17.10

The goal of the Washington State Noxious Weed Law is to protect the state from the introduction and spread of noxious weeds. These weeds pose a threat due to their destructive or competitive natures, and are very difficult to control. The law lists weeds that must be controlled, contained, or eradicated, depending on each listing.

Control is defined as the prevention of all seed production.

Containment is the confinement of the noxious weed infestation to an identified area.

Eradication means the elimination of a weed species.

The Washington State Noxious Weed Control Board determines the noxious weeds of the state and adopts them into regulation (WAC 16-750). These weeds are then classified depending on the size of the infestation and the ability to control them. Each weed is classified as a Class A, Class B, Class B designate, or Class C weed.

<table>
<thead>
<tr>
<th>Class A weeds. These are noxious weeds with very limited distribution. They are targeted for eradication.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class B weeds. These are noxious weeds with established populations in some regions of the state, but are rare or absent in other regions. The goal with Class B weeds is to contain them to current regions and prevent further spread.</td>
</tr>
<tr>
<td>Class B designate weeds. To prevent further spread of Class B weeds, these weeds have been designated for mandatory control within specified regions of the state.</td>
</tr>
<tr>
<td>Class C weeds. These include other noxious weeds that pose a threat. Control is determined at the county or weed district level.</td>
</tr>
</tbody>
</table>

Washington State Seed Law—RCW 15.49

Washington State Seed Law protects the state from introductions of noxious weed seeds that pose a threat due to their destructive or competitive natures, and that are very difficult to control. The law prevents the legal sale or distribution of such seed for planting purposes.

Washington State Quarantine Law—RCW 17.24

The purchase, transport, distribution, or sale of many noxious weeds is prohibited under the state quarantine law. The Washington State Department of Agriculture (WSDA) regulates nurseries, garden stores, and other outlets that sell plant material to ensure noxious weeds are not being sold as ornamentals. Purple loosestrife and Scotch broom are noxious weeds introduced to Washington as garden plants.

Registration Restrictions for Groundwater Protection—WAC 16-228-1231

In addition to federally designated restricted use pesticides, WSDA has declared several pesticides (insecticides and herbicides) state restricted use under the Rules Relating to General Pesticide Use.

<table>
<thead>
<tr>
<th>Restricted use herbicides</th>
</tr>
</thead>
<tbody>
<tr>
<td>atrazine</td>
</tr>
<tr>
<td>bromacil</td>
</tr>
<tr>
<td>DCPA</td>
</tr>
<tr>
<td>diuron</td>
</tr>
</tbody>
</table>

To apply restricted use products in this state, the applicator must have the appropriate pesticide application certification (license) for agricultural weed control or must work under the direct supervision of someone who has the proper pesticide license.

Along with the restrictions on who can legally apply these herbicides, many labels have clear groundwater advisories listed in the “Environmental Hazards” section. Heed the precaution and do not use herbicides that may leach in vulnerable areas.
Registration Restrictions for Herbicides in Aquatic Sites—WAC 16-228-1231

Only use herbicides with aquatic labeling in aquatic environments. All aquatic herbicides are restricted use and require an Aquatic Pest Control or Aquatic Irrigation endorsement on the license, or a Private Applicator License. In addition, all aquatic applications require a “short-term water quality modification permit” from the Washington State Department of Ecology.

Herbicide Sale and Use Regulations—WAC 16-228-1231 and 1250; and 16-230-600 through 675

The distribution, use, and application of all high volatile esters and dust formulations of dicamba and phenoxy hormone-type herbicides (such as, 2,4-D and MCPA) are prohibited throughout the state.

Liquid formulations of dicamba and phenoxy hormone-type herbicides, registered with the state and distributed in larger than one-gallon containers in counties east of the crest of the Cascade Mountains, can only be distributed by licensed pesticide dealers to certified applicators. In addition, regulations regarding adjuvants, application dates and times, equipment configurations and other details are explained in statewide regulations or in county regulations under the authority of the Washington State Department of Agriculture.

Diquat, paraquat, and endothall are restricted use desiccants and defoliants in all counties east of the crest of the Cascade Mountains. The regulation stipulates equipment configurations, adjuvants, timing, and more restrictive rules for areas in Walla Walla County.

Other Weed Management Rules

WSDA has other rules relating to herbicide sale and use. These include rules regarding picloram (Tordon) use in Spokane County and certain pesticide use (except home and garden) in Benton, Franklin, and Walla Walla counties.

It is the applicator’s responsibility to be aware of different rules across the state. WSDA pesticide rules can be found in Washington Administrative Code (WAC 16-228) Rules Relating to General Pesticide Use. Most of these supplemental rules exist due to corrective measures taken by the Department of Agriculture to rectify problem situations such as drift or water contamination.
Use pesticides with care. Apply them only to plants, animals, or sites as listed on the label. When mixing and applying pesticides, follow all label precautions to protect yourself and others around you. It is a violation of the law to disregard label directions. If pesticides are spilled on skin or clothing, remove clothing and wash skin thoroughly. Store pesticides in their original containers and keep them out of the reach of children, pets, and livestock.

Copyright 2016 Washington State University

WSU Extension bulletins contain material written and produced for public distribution. Alternate formats of our educational materials are available upon request for persons with disabilities. Please contact Washington State University Extension for more information.

Issued by Washington State University Extension and the U.S. Department of Agriculture in furtherance of the Acts of May 8 and June 30, 1914. Extension programs and policies are consistent with federal and state laws and regulations on nondiscrimination regarding race, sex, religion, age, color, creed, and national or ethnic origin; physical, mental, or sensory disability; marital status or sexual orientation; and status as a Vietnam-era or disabled veteran. Evidence of noncompliance may be reported through your local WSU Extension office. Trade names have been used to simplify information; no endorsement is intended. Published December 2004. Reviewed April 2016.